
DSQL – An SQL for Structured Documents

Extended Abstract

Arijit Sengupta1 and Mehmet Dalkilic2

1 Department of A&IS, Kelley School of Business, Indiana University
Bloomington, IN 47405, USA

asengupt@indiana.edu

http://www.kelley.iu.edu/asengupt/
2 School of Informatics, Indiana University

Bloomington, IN 47405, USA
dalkilic@indiana.edu

Abstract. SQL has been the result of years of query language research,
and has many desirable properties. We introduce DSQL - a language that
is based on a theoretical foundation of a declarative language (document
calculus) and an equivalent procedural language (document algebra).
The outcome of this design is a language that looks and feels like SQL,
yet is powerful enough to perform a vast range of queries on structured
documents (currently focused on XML). The design of the language is
independent of document formats, so the capability of the language will
not change if the underlying markup language were changed. In spite
of its familiarity and simplicity, we show that this language has many
desirable properties, and is a good candidate for a viable query language
for XML. This paper presents a canonical form of DSQL, showing only
the properties of the language that affect the complexity of the language.
Remarkably, SQL = core DSQL for flat input and outputs.

1 Introduction

We propose an extension of SQL called the Document SQL (DSQL) as a query
language for XML. Interestingly, DSQL maintains its “roots” by being able to
perform its role as SQL on flat structures that represent tables. DSQL possesses a
number of important elements. DSQL, like SQL, gives data independence, freeing
users from having to write procedural components. DSQL, like SQL, is simple.
And since SQL is the de facto standard, learning DSQL requires substantially
less effort than learning an entirely new language. DSQL has the potential to be
optimized–a benefit of SQL that has made it so commercially popular. Lastly,
DSQL is based on formal design principles which means its semantics is well-
understood.

There is a precedence for using SQL, e.g., [1], demonstrating various levels
of success in their respective fields by relying on the familiarity of SQL. One
of the most well-known examples is OQL (Object Query Language) [2], a query
language for Object-Oriented database systems that is extension of SQL capable
of handling the nuances of the Object-Oriented database model.

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 757–760, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

758 Arijit Sengupta and Mehmet Dalkilic

There are a number of converging design objectives for an XML query lan-
guage in this paper. We briefly describe three here. First is a language that is
based on a well-known, well-accepted formal semantics. Second is a language that
does not rely on the underlying data structure, thus exhibiting data indepen-
dence. Third, is the applicability of well-known query language design principles
like low complexity, closure, and non-Turing completeness.

2 DSQL Specification

W3C (http://www.w3.org) is currently involved in an effort towards the query
language XQuery which has been presented through a series of related W3C
recommendations. XML has been widely recognized as the next generation of
markup language for the Internet. There is necessarily a need for querying XML.
We now describe the language characteristics of DSQL. DSQL is different from
SQL primarily in DSQL’s ability to search along paths and restructure data.
Most omitted features are exactly the same as standard SQL. The basic syntax
and an example of a DSQL query are shown below.

SELECT output_structure

FROM input_specification

WHERE conditions

grouping_specs

ordering_specs

SELECT result<B.title>

FROM bibdb..book B

WHERE B.title = ’Extending SQL’

As in SQL, only the SELECT and the FROM clauses are required. The other
clauses are optional. Also, multiple SELECT queries can be combined using the
standard set operations (Union, Intersect, Minus). The SELECT clause allows the
creation of structures with arbitrary levels of nesting. The FROM clause utilizes
XPath to retrieve trees, subtrees, etc.. The WHERE conditions in DSQL are similar
to those in SQL. The main difference in semantics is due to paths, i.e., all
expressions in DSQL are path expressions, so operators are often set operators.

3 Comparative Examples

The language proposed in this paper is capable of performing most of the queries
in the W3C XQuery use case that are independent of XML-specific issues such
as namespaces. We show three pairwise equivalent queries to compare the two
languages, XQuery (left) and DSQL (right).
Query 1. List books published by Addison-Wesley after 1991, including their
year and title.

<bib>

{ FOR $b IN SELECT bib<B.title>

document("http://www.bn.com")/bib/book FROM BN.bib.book B

WHERE $b/publisher = "Addison-Wesley" WHERE B.publisher =

AND $b/@year > 1991 "Addision-Wesley"

RETURN AND B.attval(year) > 1991

<book year={$b/@year}>{$b/title}</book>

}</bib>

DSQL – An SQL for Structured Documents 759

Query 2 . Create a flat list of all the title-author pairs, with each pair enclosed
in a “result” element.

<results>

{ FOR $b IN

document("http://www.bn.com")/bib/book,

$t IN $b/title, SELECT results<B.title,

$a IN $b/author B.author>

RETURN FROM BN.bib.book

<result> { $t } { $a } </result>

} </results>

Query 3. For each book in the bibliography, list the title and authors, grouped
inside a “result” element.

<results>

{ FOR $b IN

document("http://www.bn.com")/bib/book

RETURN SELECT result<B.title,

<result> B.author>

{ $b/title } FROM BN.bib.book

{ FOR $a IN $b/author GROUP BY B.title

RETURN $a }

</result>

} </results>

4 Important Observations and Contributions

DSQL is derived from a calculus (DC) and has an equivalent algebra (DA)
that are analogous to the Relational calculus and algebra for SQL. Among the
more important properties of DC and DA are: (i) the calculus and algebra are
semantically equivalent; (ii) they are safe and (iii) they are in PTIME.

The primary contribution of this work is based on our results of semantic and
syntactic equivalence of DSQL with SQL. This implies any SQL query would run
unchanged on the structured equivalent of the tabular data, and thus systems
capable of processing SQL can seamlessly integrate DSQL (and hence structured
querying) into the existing infrastructure. Although many languages have been
proposed for XML, no language to our knowledge has this property. A summary
of all the results from the language are presented below.

1. DSQL properties Because of the equivalence with the calculus and algebra,
DSQL is implicitly safe, closed, and in PTIME.

2. DSQL Macros DSQL can be augmented with macros that allow structuring
operations that do not change any complexity, such as decision and link
traversal. IF-ELSE queries can be implemented using union, and finite link
traversal can be performed using exists.

3. No ordering ambiguity The sequential nature of documents is built into
DSQL. A single document is always sequential, but a document is fragmented
using a path expression creates unordered elements (since the result of a path
expression is a set).

760 Arijit Sengupta and Mehmet Dalkilic

4. Set-Atom ambiguity All non-atomic expressions (queries and path expres-
sions) in DSQL are set expressions, so there is no ambiguity in comparison
of different expressions.

5. Similarity with Relational domain Because of the analogous nature of
DSQL with SQL, most of the language processing methods work unchanged.
For example, all the optimization equalities hold in DSQL, which indicates
that the same optimization principles will be applicable in processing DSQL
queries.

6. DSQL=SQL for flat structures For flat structures as input, and intended
flat structures as output, DSQL queries are exactly the same as the corre-
sponding SQL queries.

7. Merging relational and document databases DSQL can easily sup-
port queries which include local documents, remote documents via a URL,
and relational tables all in the same FROM clause. This is an easy yet ele-
gant technique for incorporating distributed heterogeneous databases in this
query language.

8. Implementation architecture We built a prototype implementation of
DSQL in DocBase[3] that also demonstrates the applicability of the concepts
described here.

5 Future Research Issues

A number of issues need to be handled in order to apply DSQL in XML. Specific
XML features (such as namespaces, attributes, etc.) are not included in DSQL
because of its markup-independent design. XML-specific features can easily be
added on to the language in order to satisfy all the W3C XML Query require-
ments. DSQL does not support recursion, and we have no intention of supporting
direct unbounded recursion in the language. Similar to SQL, DSQL can be em-
bedded in a host language or a 4GL-type language for such language features.
We are also in the process of performing an empirical study comparing DSQL
with XQuery based on a human-factors analysis involving users. See [4] for a full
version of this paper.

References

1. Mendelzon, A., Mihaila, G., Milo, T.: Querying the world wide web. International
Journal of Digital Libraries 1 (1997) 68–88 757

2. Cluet, S.: Designing OQL: Allowing objects to be queried. Information Systems 23
(1998) 279–305 757

3. Sengupta, A.: DocBase - A Database Environment for Structured Documents. PhD
thesis, Indiana University (1997) 760

4. Sengupta, A., Dalkilic, M.: DSQL - an SQL for structured documents (http://

www.kelley.iu.edu/ardennis/wp/tr108-1.pdf). Technical Report TR108-1, In-
diana University (2001) 760

	DSQL -- An SQL for Structured Documents
	Introduction
	DSQL Specification
	Comparative Examples
	Important Observations and Contributions
	Future Research Issues

