Parallel Query Processing Algorithms
for Semi-structured Data

Wenjun Sun and Kevin L

SCISM, South Bank University
103 Borough Road, London SE1 OAA
lukjesbu.ac.uk

Abstract. Semi-structured data can be described by a labelled directed
graph. Query costs on semi-structured data could be very high due to
the sequential processing of path matching in a graph shape data
structure. In this paper two types of parallel path-based query
processing methods are introduced for improving the system
performance. The first type includes three parallel version of pointer
chasing methods based on the principle of message-driven computation.
In the second type of method, the pre-fetch technique is used to achieve
a low communication cost and a high degree of parallelisation.

Keywords: Path-based query, Parallel processing, Semi-structured data.

1 Introduction

Queries on semi-structured data depend not only on the contents of the data sets but
also on the data schema. A number of methods for query processing and query
optimisation have been introduced [1, 2]. These investigations are all based on an
assumption that the platform used for query processing is a serial processing
environment. The query cost could be very high due to the sequential processing of
path matching in a graph shape data structure, in particular, when complex queries
(including join operations and multiple path expressions) are involved.

One promising solution is using parallel techniques to improve overall system
performance. Parallelism has been employed in both relational and object-oriented
databases to improve the system throughput and respond time. To our knowledge, the
issues of applying parallel techniques for path expression queries for semi-structured
databases have not yet been investigated. Although the data models [3, 4] used to
describe semi-structured data are similar to object oriented data models which are
graph based models, there are significant differences between them. Because of the
features of semi-structured data, the methods used for parallel query processing in
traditional database applications will not be suitable, and it poses new challenges to
existing data processing technologies.

In this paper, we are going to introduce four newly designed parallel query process
algorithms for semi-structured data. The major contribution of this work is that only
massage (not data objects, or part of data objects) passing amongst processing

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 770-773, 2002.
© Springer-Verlag Berlin Heidelberg 2002



Parallel Query Processing Algorithms for Semi-structured Data 771

elements (PEs) during query evaluation. The organisation of the rest of the paper is as
follows. Section 2 and 3 describe four parallel query process algorithms. In section 4
presents a summary.

2 Passage Driven Parallel Methods

In this section three new parallel algorithms are introduced for processing semi-
structured data. They are the parallel versions of the serial top-down, bottom-up and
hybrid methods [5], namely, Parallel Top-down Query Processing Strategy (PTDQ),
Parallel Bottom-up Query Processing Strategy (PBUQ) and Parallel Hybrid Query
Processing Strategy (PHQ). These algorithms are designed to explore the possible
ways to utilise the resources of a shared-nothing architecture and maximise the degree
of parallelisation.

2.1 Parallel Top-Down Query Processing Strategy (PTDQ)

The top-down strategy is a natural way for evaluating a path expression. It follows the
path from the root to the target collections using the depth first graph traversal
algorithm. It processes the path expression by navigating through object references
following the order of the collections in path expressions. If there are multiple
references from one object to the objects in the next collection, the navigation follows
the depth first order.

2.2 Parallel Bottom-Up Query Processing Strategy (PBUQ)

The parallel bottom-up strategy starts with identifying all objects via the last edge in
the input path and check if the objects satisfying the predicate, then traverses
backwards through the path, going from children to parents. Similar to the top-down
strategy, if it finds that the next object is in another PE, it will send an search
instruction (SI) to it. The advantage of this approach is that it starts with objects
guaranteed to satisfy at least part of the predicate, and it does not need examine the
path any further if the path does not satisfy the predicate.

2.3 Parallel Hybrid Query Processing Strategy (PHQ)

The PHQ strategy start to evaluate a query from both top down and bottom up
directions at the same time, and processes from both directions will meet somewhere
in the middle. This will increase the degree of paralleisation for query processing. On
the direction of top down, the PHQ uses the PTDQ algorithm to create a temporary
result which satisfying the predicate so far. Meanwhile, on the other hand, this
algorithm traverses up from the bottom vertex using the PBUQ algorithm and reaches
the same point as the top-down thread does. A join between the two temporary results
yields the complete set of satisfying paths. The detailed algorithms can be found [6].



772 Wenjun Sun and Kevin Lii

3 Parallel Partial Match Query Processing Strategy (PPMQ)

The algorithms introduced in Section 3 have provided solutions for processing path
expression query in parallel. However, these three algorithms require messages to be
passed amongst processing nodes. In addition, a S queue may be built up at a PFE if it
is busy, and it will require further waiting time. To transfer data amongst PEs is much
more expensive compare other data operations, it should be kept as less as possible.

To overcome these drawbacks, a parallel partial match query processing strategy is
introduced. The basic idea of PPMQ is that every BPE searches the paths in parallel.
When they find an object in a path which is not in their local PEs, they will keep
records of the identication of the PE in which the target object is located rather than
send messages to that the descendant PEs immediately (where in PTDQ, PBUQ and
PHQ, such a message will be sent out). After all possible partial matched routes
(which will be defined below) have been generated, these routes will be sent to one of
these PEs. In this PE, all of partial matched routes are merged together and a check is
carried out to see if it matches the predicate path expression. During this process, no
object (data) or message is required to be transferred between PEs before the finaly
merge. This approach could cost less compare to other three approaches, if the
operation cost for message passing during the query process in the other three
approaches is higher than the cost of final merge in PPMQ, and that in fact it is very
much of the case for processing complex queries.

4 Summary

Observing the four algorithms introduced in this paper, it can be found that the key
factors that influence the efficiency of these algorithms are the serial fragments and
the coefficient of the parallel fragments. The first three methods has two drawbacks:
the first drawback is that a large number of communications between PEs may
required; the second drawback is when the PEs spinning due to excessive coherence
traffic on the communication line causes additional waiting time. As in some cases,
PEs must wait for messages from other PEs. This requires synchronisation between
PEs and consequently it decreases the degree of parallelisation. The fourth method
has been proposed for solving the above drawbacks of first three methods. The main
purpose of this strategy is to reduce both communication time and waiting time.
However, the price is that it sometimes may need more merging time compare with
the other three methods. A linear speed up along with the number of processor could
be achieved for the first three algorithms if the waiting time and communication time
are considerably low. For the fourth algorithm, a linear speed up could also be
possible if there are quite few of number of elements need to be merged. The first
three algorithms have a linear speed up apart from the waiting time and
communication time. The partial match algorithm also has linear speed up apart from
the optimisation time and final merging time.

These algorithms have been coded in C programming language and the system
runs under Lunix operating system in a cluster computer system environment.
Presently, only a small number of tests have been conducted. In the future, we will



Parallel Query Processing Algorithms for Semi-structured Data 773

test them under different data sets, query sets with different frequency, to understand
more about these algorithms and to find the possible ways to improve them. We also
intend to extend the current cost models for these algorithms with additional functions
(such as estimate the selectivity, queue waiting time) to develop a set of performance
estimation tools for parallel semi-structure data management systems.

References

1. Z.G.Ives, AY. Levy, D. S. Weld, Efficient Evaluation of Regular Path
Expressions on Streaming XML Data , UW CS&E Technical Reports by Date
UW-CSE-00-05-02.PS.Z , 2000

2. Curtis E. Dyreson, Michael H. Bohlen, Chriatian S. Jensen, Capturing and
Querying Multiple Aspects of Semi-structured Data, Proc. of the 25"
International Conference on Very Large Databases, Edinburgh, Scotland, 1999.

3. Y.Papakonstantinou, H.Garcia-molina, and Jennifer Widom, Object Exchange
Across Heterogeneous Information Sources, in Proceedings of the Eleventh
International Conference on Data Engineering, PP.251-260, Taipei, Taiwan,
March 1995.

4. Document Object Model, W3C Technical Report, Nov. 2000,
http://www.w3.0rg/TR/2000/REC-DOM-Level-2-Core-20001113.

5. Jason McHugh, Jennifer Widom, Query Optimization for XML, Proceedings of
the Twenty-Fifth International Conference on Very Large Data Bases,
Edinburgh, Edinburgh, Scotland, 1999.

6. Y. Zhu, W. Sun, K. J. Lii. Parallel Query Processing for Semi-structured Data.
Technique report 02-01-KL, SCIMS South Bank University, 2001



	Introduction
	Passage Driven Parallel Methods
	Parallel Top-Down Query Processing Strategy (PTDQ)
	Parallel Bottom-Up Query Processing Strategy (PBUQ)
	Parallel Hybrid Query Processing Strategy (PHQ)

	Parallel Partial Match Query Processing Strategy (PPMQ)
	Summary
	References

