
A Meeting Scheduling System Based

on Open Constraint Programming

Kenny Qili Zhu and Andrew E. Santosa

Department of Computer Science, National University of Singapore
S16, 3 Science Drive 2, Singapore 117543, Republic of Singapore

{kzhu,andrews}@comp.nus.edu.sg

Abstract. In this paper, we introduce a meeting scheduling system
based on open constraint programming (OCP) paradigm. OCP is an ex-
tension to constraint logic programming (CLP), where a server capable
of executing constraint logic programs acts as a mediator of communi-
cating reactive agents. A meeting among several users can be scheduled
automatically by a constraint logic program in the server based on the
meeting participants’ preferences. Flexible user preferences can be pro-
grammed using the OCP reactors language. CLP is suitable to be used
in meeting scheduling which is a combinatorial problem. Its declarative
programmability is more amenable to changes.

1 Introduction

Commercial calendars such as Outlook are not flexible enough to adapt to dif-
ferent working environments. On the other hand, building custom software is
often costly and does not cater for frequent changes in corporate management.

In this paper, we present a meeting scheduling system based on Open Con-
straint Programming (OCP) paradigm [3]. OCP extends CLP with reactivity
and openness. OCP is a concurrent programming framework which allows spe-
cial queries that react to internal and external events, hence the reactivity. The
queries can be submitted by concurrently running, distributed client programs
that can be written in any language, hence the openness. These queries, a.k.a.
reactors, are written using a simple language with synchronization and time-
out capabilities. Our system stands out from the rest due to this declarative
programmability of scheduling constraints.

The system consist of a constraint store in the form of a constraint logic
program, a CLP(R) solver, an OCP server, and a web-based CGI user interface.
The store contains global and user data, integrity and user constraints and other
rules that govern the behavior of the system. The users may send a query by
clicking buttons on the user interface. These are translated into OCP reactors
and sent to the server. Some of the reactors can be delayed in the server and
triggered later when some condition is satisfied.

In the next section we will explain the knowledge base which is a part of the
constraint logic program. We will thus elaborate on the triggering mechanism in
Section 3. We will describe some related works in Section 4 before concluding
our paper in Section 5.

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 792–796, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Meeting Scheduling System Based on Open Constraint Programming 793

2 Knowledge Base

We assume an organization consisting of research groups, as in universities. A
research group itself consists of a principal researcher, and co-researchers. A
principal researcher often needs to call for a meeting by announcing it to the po-
tential participants. The participants thus reply to the announcement by stating
their preferences on the timing. These concepts are captured by the following
components of the constraint store:

– Users. There are three roles in the system, namely normal users (or par-
ticipants), hosts, and administrator. A user assumes at least one of the role,
and can have multiple roles at the same time.

– User preferences. All the preferences are real numbers between 0 and
1, where 0 represent “blackout” for that slot and 1 shows a free slot. For
example:
pref(kenny, pingpongmatch, [1.0, 1.0, 0.5, ..., 0.3, 1.0]).

– Public resources. Resources required for the meetings like space and equip-
ment.

– Public meetings. Each is defined as having a title, proposed participants,
required resources, deadline of submission, and schedule time window.

– Bundles. Bundles are collections of time slots with practical meaning to
a user or a group of users, e.g. “all mornings”, “every Tuesday afternoon”,
“lunch time”, etc.

– Optimization rules and integrity constraints. The optimization rules
aim at maximizing the combined weighted preferences of all participants of
a meeting, and the integrity constraints ensure that no conflicts such as one
resource being used in two locations will occur.

The CLP(R) solver is used to solve the static event scheduling problem: Given
a set of variable constraints on participants, resources and meeting time window,
produce a schedule of events that achieve collective satisfaction among all the
participants before pre-defined deadlines. When there are a number of events to
be scheduled together, this becomes a combinatorial optimization problem. The
constraint solving based on CLP(R) allows a good, if not optimal, solution.

User-defined constraints and their preferences can be added, removed or
changed dynamically. For example, as a user adds more meetings to attend to his
calendar, the addition will be automatically translated into changed preferences.
Each such change will trigger a constraint solving procedure.

3 User Reactors

OCP is a framework which generalizes constraint stores and their interactions [3].
The essential model consists of a shared constraint store, concurrent program-
mable agents, which are independent of the store, and a notion of reactor, which
provides synchronization and atomicity of operations against the store. A reactor
follows this syntax:

wait 〈cond1〉 ⇒ 〈action〉
unless 〈cond2〉

794 Kenny Qili Zhu and Andrew E. Santosa

The reactor would be suspended in the OCP server until the sustain condition
〈cond1〉 becomes true and remains true during the execution of 〈action〉. At any
point, any query or suspended query will be aborted when the timeout condition
〈cond2〉 is satisfied.

Next we introduce the workings of the system by using sample reactors.
User’s calendar consists of time slots. Priority states how much the user

prefers to attend that meeting in the time slot. The reverse of this priority which
we call preference is defined as preference(time, user) = 1 − priority(time,
user)/10. The following is the reactor triggered if a user is invited to a meeting:
wait invited(meeting, participants), user ∈ participants
⇒ update pref(user, preferences), update cons(user, constraints)
unless false
A normal user may manually change their preferences in the calendar, and re-
submit it. Some other meetings added to the system may also automatically
change his or her preferences. When a tentative schedule has been computed, it
is marked on the user’s calendar. We have the reactors:
wait true
⇒ set pref(user, preferences),

set cons(user, constraints)
unless false

wait tentative schedule(meeting, time)
⇒ mark calendar(meeting, time)
unless deadline(meeting, d), clock?d

The host is a special user proposing a meeting:
wait true ⇒ propose(meeting, timewindow, participants, resources)
unless false
The host has the right to favor certain participants by giving their preferences
higher priority, so that their weighted preferences are higher.

After all participants have submitted their preferences and constraints, the
solver will present to the host the average preferences of all the time slot within
the time window, along with the best solutions, in the form of a preferences table.
The host may thus choose one of the time slot for the meeting. The host also
reserves the right to cancel the meeting if it is no longer needed, or if the schedule
produced by the system is not satisfactory. However, the host may not tamper
with other user’s preferences to make a particular time slot more favorable. As
user preferences change over time, the server computes new average preferences.
The host thus may change the meeting’s schedule accordingly. The host can also
submit constraints to bias the solutions computed by the server since the system
is very flexible to cope with changes in such requirements. By entering different
constraints using the user interface, the behavior of the system can be altered
easily.

The following reactor is used by the host to notify the participants of a new
solution to meeting schedule:
wait new schedule(meetings, times), meeting ∈ meetings, time ∈ times
⇒ tentative schedule(meeting, time)
unless false
The administrator is in charge of scheduling for all meetings whenever any user
preferences, constraints or required resources are updated. The following reactor
sustains on such changes:

A Meeting Scheduling System Based on Open Constraint Programming 795

wait (change resource(r), r ∈ resources ;
change preferences(user, preferences), user ∈ participants);
change constraints(user, constraints), user ∈ participants)

⇒ re schedule(open meetings, times)
unless deadline(meeting, d), meeting ∈ open meetings, clock?d
The administrator also controls the availability of public resources:
wait true ⇒ update resource(resource, newschedule)
unless false

4 Related Work

In the paper [6], the authors stated that 88% of the users of calendar system
said that they use calendars to schedule meetings. This justifies an integrated
approach to calendar and meeting scheduling system. As in our system, in [1] the
meeting scheduling system is integrated with users’ calendar. User specifies the
events that they want to attend, and the priority of the event. Users calendars are
combined to find an appropriate time slot for a meeting. However, negotiation is
done manually through exchanging of email messages. Our system can be seen
as providing additional automated negotiation feature.

The paper [7] describes a formal framework for analyzing distributed meeting
scheduling systems in terms of quantitative predictions. The aspects analyzed
are announcement strategies, bidding strategies and commitment strategies. In-
teresting analyses are presented in the paper, including probability of time slots
being available.

Groupware toolkits [2,5,4] provide APIs for building groupware applications.
The APIs often provide user configurability as a limited fashion to cope with
changes in user requirements. However, toolkits are intended solely to be used
by the developers, but our system is intended to be programmable by the users
as well as developers.

5 Conclusion

In this paper we have presented a meeting scheduling system. The system con-
sists of a single open constraint programming (OCP) server and a number of
client calendars UI. The OCP server provides synchronization, concurrency con-
trol, and a knowledge base. The constraint solving capability at the server aims
at maximizing user satisfaction in terms of preferences. We have presented a
set of reactors functioning to schedule meetings that can be submitted from the
client UI. In future, more advanced topics such as scalability, fault tolerance
and communication efficiency, as well as actual usability of the system will be
addressed.

796 Kenny Qili Zhu and Andrew E. Santosa

References

1. D. Beard, M. Palaniappan, A. Humm, D. Banks, A. Nair, and Y.-P. Shan. A
visual calendar for scheduling group meetings. In Proceedings of the CSCW ’90
Conference on Computer-Supported Cooperative Work, pages 279–290. ACM Press,
1990. 795

2. S. Greenberg and M. Roseman. Groupware toolkit for synchronous work. In
M. Beaudoin-Lafon, editor, Computer-Supported Cooperative Work, volume 7 of
Trends in Software, chapter 6, pages 135–168. John Wiley & Sons, Ltd, 1999. 795

3. J. Jaffar and R. H. C. Yap. Open constraint programming. In Principles and
Practice of Constraint Programming – CP’98, 4th International Conference, Pisa,
Italy, volume 1520 of Lecture Notes in Computer Science, page 1. Springer, 1998.
792, 793

4. Lotus Corp. Lotus Notes Developer’s Guide Version 4.0. Cambridge, MA, USA,
1995. 795

5. I. Marsic. A framework for multimodal collaboration in heterogeneous environ-
ments. ACM Computing Surveys, (4), June 1999. 795

6. L. Palen. Social, individual, and technological issues for groupware calendar sys-
tems. In Proceedings of the CHI ’99 Conference on Human Factors in Computing
Systems, pages 17–24. ACM Press, 1999. 795

7. S. Sen and E. H. Durfee. A formal study of distributed meeting scheduling. Group
Decision and Negotiation, 7:265–289, 1998. 795

	A Meeting Scheduling System Based on Open Constraint Programming
	Introduction
	Knowledge Base
	User Reactors
	Related Work
	Conclusion

