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ABSTRACT
In their paper [1], S. Brin, R. Matwani and C. Silverstien
discussed measuring signi�cance of (generalized) association
rules via the support and the chi-squared test for correlation.
They provided some illustrative examples and pointed that
the chi-squared test needs to be agumented by a measure of

interest that they also suggested.

This paper presents a further elaboration and extension of
their discussion. As suggested by Brin et al, the chi-squared
test succeeds in measuring the cell dependencies in a 2x2

contingency table. However, it can be misleading in cases
of bigger contingency tables. We will give some illustrative
examples based on those presented in [1]. We will also pro-
pose a more appropriate reliability measure of association
rules.

1. THE SUPPORT-CONFIDENCE FRAME-
WORK FOR ASSOCIATION RULES

For an association rule t) c the support and con�dence are
de�ned as:

Support = P [t ^ c]

Confidence =
P [t ^ c]

P [t]

The con�dence is the conditional probability of c given t;
P [cnt]. This conditional probability is equal to the uncondi-

tional probability P [c] i� t and c are independent. Accord-
ingly the measure of con�dence for association rules can be
misleading since the con�dence can be high simply because
P [c] is high while t and c are highly independent. Generaliz-
ing associations, S. Brain et al [1] suggested other measures

like the chi-squared test of correlation and interest. The
Chi-squared test method is quite appropriate for 2x2 con-
tingency tables. However, we will show that it can fail in
case of bigger contingency tables.

What is needed is a measure of dependency or correlation.
A more appropriate measure of dependency is proposed and
presented in section 4 of this note.

2. CHI-SQUARE TEST OF CORRELATION

We start by presenting the de�nition of the Chi-Square test

for general RxC contingency tables [3; 4]. Suppose we are
observing two characteristics A and B where A can only
take R distinct values a1; a2; : : : ; aR and B can take only C
distinct values b1; b2; : : : ; bc. The variables A and B can be
nominal or ordinal variables.

The variables A and B are independent if and only if Pr[A =
ai; B = bj ] = Pr[A = ai]:P r[B = bj :]
Let Nij be the number of observations for the ith row and
jth column.
Ni: =

P
j
Nij ; N:j =

P
i
Nij ; N =

P
i

P
j
Nij

and let pij probability that an observation falls in category

ai and category bj .
pi: probability that an observation falls in category ai.
p:j probability that an observation falls in category bj .
The estimates p̂i: and p̂:j of pi: , p:j are given by p̂i: =
Ni:=N; p̂:j = N:j=N .

Now if A and B are independent, then pij = pi::p:j and
the expected number of observations in category (ai; bj) is
Npi::p:j . Thus the estimate of the expected number of ob-
servations in the (i,j) cell is given by

Eij = Ni::N:j=N:

In order to test the hypothesis of independence of A and B,

we simply compare the observed numbers with the expected
numbers by computing:

�
2
=
X
i

X
j

(Nij �Eij)
2

Eij

Under the hypothesis of independence, the quantity �2 has
a chi-square distribution with (R�1)(C�1) degrees of free-
dom. Clearly, if �2 is large, it indicates that the observed
and expected numbers of observations di�er greatly and the

hypothesis of independence should be rejected. More for-
mally, the chi-square test calls for rejecting the hypothesis
of independence at (1 � �) level if

�
2
> �

2
(R�1)(C�1); 1� �

where �2
(R�1)(C�1); 1 � � is the 1 � � percentile of the chi-

square distribution with (R� 1)(C � 1) degrees of freedom.

The chi-squared test of correlation applies to the entire con-
tingency table, however, for association rules we need a sin-
gle cell dependence test. For a 2x2 contingency table, these
two tests are equivalent simply because if the events A and

B are independent then A and B, A and B, and A and
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B are also independent and the chi-squared test result will

support the independence hypothesis.

This is not the case in bigger RxC contingency tables with
R and\or C greater than 2. The chi-squared test statistic
can be signi�cantly high and results in rejecting the indepen-

dence hypothesis while some of the cells show independence.

This fact is illustrated by the following two examples based
on examples 1,4 presented in [1].

Example 1. This example is based on example 1 of [1]
with the following contingency table:

c c �row

t 20 5 25

t 70 5 75

�col 90 10 100

where t and c represent tea and co�ee purchases respectively.

Now let us split the set c into two mutually exclusive (and
exhaustive) sets c1 and c2 represeting co�ee purchases of
brands 1 and 2 respectively.

A resulting 2x3 contingency table would be:

c1 c2 c �row

t 5 15 5 25

t 50 10 15 75

�col 55 25 20 100

The chi-squared values is 23.8 which is higher than the cuto�
value (5.99 at 95% signi�cance level with 2 d.f.) and hence
the assumption of independence is rejected.

Now consider the events t; c;

P (t ^ c) = 0:15

P (t):P (c) = (0:75):(0:2) = 0:15

and hence t&c are independent.

On the other hand the con�dence of the association rule
c) t is given by:

P (t ^ c)

P (c)
=

15

20
= 0:75

which is very high in spite of the independence of c; t simply
because P (t) is high.

Example 2. This example is based on example 4 of [1]

focused on testing the relationship between military service
and age. The census data resulted in the following 2x2 con-
tengincy table:

i2 i2 �row

i7 17918 911 18829

i7 9111 2430 11541

�col 27029 3341 30370

where the event i2 � never served in the military and the
event i7 � age < 40 yrs.

Now let us splite i7 into two mutually exclusive events:

i
0

7 age < 20 yrs:

i"7 20 � age < 40

The resulting 3x2 contingency table can be given by:

i2 i2 �row

i
0

7 5163 304 5467

i"7 12755 607 13362

i7 9111 2430 11541

�col 27029 3341 30370

The chi-squared value is 1926 which is signi�cant at the 95%
level and hence the assumption of independence is rejected.

Now consider the events i
0

7 , i2

P (i
0

7 ^ i2) =
5163

30370
= 17%

and P (i
0

7):P (i2) =

�
5467

30370

��
27029

30370

�
= 16:02%

These close values indicate a high level of independence of

i
0

7 , i2

Again the con�dence of the association rule i
0

7 ) i2 will be

94% which is very high simply because P (i2) = 89% is high.

From the above two examples we conclude that both chi-
squared test for contingency tables bigger than 2x2 and the

con�dence rule can lead to wrong conclusions concerning
association rules. However, high order contingency tables
can be folded down to 2x2 tables if less detailed association
analysis is acceptable.

3. INTEREST AND CONVICTION MEASURES
OF ASSOCIATION RULES

Brin. S, et al [1] proposed a measure of interest given by:

I =
P (A ^ B)

P (A):P (B)

The further this from 1 the more the dependence. This mea-

sure has the serious drawback of being completely symmetric
that it gives the same value for the association rules A) B

and B ) A.

To �ll this gap, S. Brin et al [2] de�ned conviction as:

P (A):P (B)

P (A ^ B)

Again this measure is symmetric in the the complement. It
gives the same value for the association rules A ) B and

B ) A. which is a serious drawback.

4. PROPOSED MEASURE OF RELIABILI-
TY OF ASSOCIATION RULES

We here propose a measure of the reliability of the associa-

tion rule A) B given by:

R(A) B) =j
P (A^B)

P (A)
� P (B) j

which does not have the same value for B ) A. The bigger
R the stronger the association rule.

The values of I and R for example 2 of the preceeding section
are as follows:

I 1.06

R(i
0

7 ) i2) 0.05

R(i2 ) i
0

7) 0.02
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It is clear that R(A ) B) is the di�erence between the

conditional probability of B given A and the unconditional
probability of B. It measures the e�ect of the available
information about A on the probability of B. The greater
this (absolute) di�erence the stronger the association (A)

B). Positive correlation is indicated if
P (A^B)

P (A)
� P (B) � 0

while negative correlation is indicated otherwise. Moreover,
this proposed measure is a probability and can be subjected

to classical analysis, e.g. con�dence intervals and tests of
hypothesis.
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