

SIGKDD Explorations. Copyright 2000 ACM SIGKDD, January 2000. Volume 1, Issue 2 – page 67

KDD-99 Classifier Learning Contest
LLSoft’s Results Overview

Itzhak Levin

LLSoft
6 Ha-Marganit Street

Rishon-Le-Ziyyon, 75427, Israel

il@llsoft.com

ABSTRACT

Kernel Miner is a new data-mining tool based on building the
optimal decision forest. The tool won second place in the KDD’99
Classifier Learning Contest, August 1999. We describe the Kernel
Miner’s approach and method used for solving the contest task.
The received results are analyzed and explained.
Keywords

Data Mining competition, decision trees, optimal decision forest,
classification, prediction.

1. KERNEL MINER
Kernel Miner is a data-mining tool for the description,
classification and generalization of data, and for predicting the
new cases. Kernel Miner is a fully automated tool that provides
solutions to database users. Although Kernel Miner applies a
system of sophisticated mathematical models and algorithms, it is
extremely simple for users. The tool has been developed for
Windows 95/98/NT and works with different databases such as
dBase, MS Access, SQL Server, Oracle, etc. directly or through
ODBC or OLEDB.

2. GENERAL MODEL AND ALGORITHM
Kernel Miner is based upon the global optimization model
developed. This global model is then decomposed into a system of
interrelated, intercoordinated and interconsistent models and
criteria. As a result, Kernel Miner constructs the set of locally
optimal decision trees (the decision forest) from which it selects
the optimal subset of trees (the subforest) used for predicting the
new cases.

The predictive modeling technique is based on sophisticated
methods for reduction of individual prediction results received
from individual classification trees. This enables us to calculate
the value of the global optimization criterion for any subset of
trees.

The global optimization criterion is to minimize a value of the
multiple estimator including the total cost of misclassifications,
and taking into account parameters of reliability and stability for
prediction. Here the notion of stability is analogous to the
corresponding concept applied in the mathematical programming
theory. Taking into account the parameters of reliability and
stability for prediction enables us to avoid the overfitting problem.

Each constructed decision tree "covers" all the examples of the
training data set. It is optimal in the sense of minimizing the
above criterion given the initial "good" partition. To find the set
of such partitions, a special optimization task is solved on the set
of two- and three-dimensional contingency tables, where the last

dimension is the dependent variable. Note that, in particular, the
"good" partition can be defined by the found function of two
independent numeric variables, so that the discretization of values
of this function separates the values (classes) of the dependent
variable "well". The notion of a "good" (and the best) splitting is
used at different stages of the algorithm and is based upon a
proprietary measure. The number of classification trees to be built
is equal to the number of found initial "good" partitions. Although
each decision tree is built optimal, we call it locally optimal
because it is generally not unique element of the final optimal
decision subforest. In particular (in the simplest cases), the
optimal subforest may consist of one tree.

3. TASK
The task for the KDD’99 Classifier Learning Contest was to create
a predictive model capable of distinguishing between legitimate
(normal) and illegitimate (called intrusions or attacks) connections
in a computer network. The training dataset consisted of about
5,000,000 connection records, and the training 10% dataset
contained 494,021 records among which there were 97,278
normal connection records (i.e. 19.69 %). Each record contained
values of 41 independent variables (fields) which described the
different features of the connection, and the value of the
dependent variable labeled as either normal, or as an attack, with
exactly one specific attack type. Each attack type belonged to one
of the following 4 categories:

1) probe, i.e. surveillance and other probing;

2) DOS, i.e. denial of service;

3) U2R, i.e. use-to-root;

4) R2L, i.e. remote-to-local.

The competitors were asked to predict the value of the dependent
variable (normal or one of the above attack categories) for each
record of the test dataset consisting of 311,029 records. The
specific character of the task consisted of the following:

1. The test data was not from the same probability distribution as
the training data.

2. The test data included specific attack types not in the training
data.

3. It was required to predict attack categories while in the training
dataset the attack types were also given.

4. APPROACH AND METHOD USED
We omitted a preprocessing stage for a lack of the domain
knowledge. Fortunately, this was not required since Kernel Miner
is able to find a full solution to the task automatically. All we
specified was the matrix of misclassification costs.

SIGKDD Explorations. Copyright 2000 ACM SIGKDD, January 2000. Volume 1, Issue 2 – page 68

We searched for the required patterns on the available training
10% dataset consisting of 494,021 records, for the following
reasons: 1) The hypothesis that the training 10% dataset had been
randomly chosen from the entire training dataset, was beforehand
verified, and it was corroborated. 2) Taking into consideration
that the number of independent variables as well as the number of
different values of the dependent variable in the training dataset
were relatively small, the available 10% dataset contained the
quite sufficient number of records in order to construct the stable
patterns and to draw the conclusions. 3) It was not required to
create numerous samples in order to imitate the different
probability distributions for the test data, since the Kernel Miner’s
predictive modeling technique does not assume that a test data
must be from the same probability distribution as the training
data. 4) The patterns found on the training 10% dataset were
clear, precise, and stable. This could not be by chance. Moreover,
this was also corroborated by the very high accuracy of prediction
on the whole 5-million training dataset. If at least one of the
above-mentioned facts did not take place, we would supplement
our analysis with an investigation of the entire training dataset
and/or different samples.

Kernel Miner’s modeling automatic process consisted of the
following stages:

4.1 Coding of Values of Variables
Note that in Kernel Miner the unique discretization for each
numeric attribute doesn’t exist. Discretization is carried out at
each step of constructing any tree in an optimal way. This is
necessary to ensure maximum possibilities for the further
optimization.

4.2 Constructing the Set of Initial “Good”
Partitions
Note that "goodness" of the initial partition is defined by not only
the "goodness" of this partition itself but, finally, by the
"goodness" of the decision tree to be constructed. Hence, it is
important not to miss any initial "good" partition. Moreover, for
example, the discussed set for the "normal" category significantly
differed from the sets of initial partitions for each of the attack
categories. Therefore, Kernel Miner constructed a broad set of
such partitions (and consequently, trees), and only at the final
stage selected the optimal subset of them. This is similar to seed
selection - the best tree does not always grow from the best of
available seeds.

The specific character of the task required to build trees not only
for the different categories but for the specific attack types as well.
Consider why this was necessary. The general pattern for each
category was necessary for prediction since the test data included
specific attack types not in the training data. This is one but not a
single reason. At the same time, the majority of the known attack
types were described by very precise patterns. The existence and
joint application of general and special patterns sharply increased
a confidence level of the prediction results.

4.3 Constructing the Decision Trees
After the selected seeds (the conditions defining the initial "good"
partitions) had been sowed, Kernel Miner constructed an optimal
tree from each of them. (Note that a proprietary criterion for
"goodness" of a tree is mutually consistent with the global
optimization criterion.) Each constructed tree "explained" all the

records of the training data set. The decision forest that was built
by Kernel Miner, contained in total 218 decision trees for
categories (including the normal one), and 537 decision trees for
specific attack types.

For example, consider the attack type "smurf" belonging to DOS
category.

In the training 10% dataset more than half of all records (280790,
or 56.8%) were labeled "smurf". Here is only two simplest trees
each of which in a one-to-one manner defines the smurf records
(see Figure 1 and Figure 2).

Note that each of these trees can be reformulated as the necessary
and sufficient condition for existence of smurf records. For
example, the first tree says that:

the type is "smurf" if and only if (519 < src_bytes <= 1032) and
(service is ecr_i) .

Of course, all was not so simple. The majority of trees constructed
were of substantially more complex structure, and did not enable
the program to draw such one-valued conclusions. The volume
restriction does not allow us to consider solving the task in details
here.

4.4 Selection of the Optimal Decision
Subforest
Now, like a sculptor, Kernel Miner must cut off superfluous. To
solve this problem, Kernel Miner applied a fast approximate
algorithm developed for solving the zero-one integer
programming model. As a result, the clear patterns were
determined for each category and the majority of specific attack
types. For instance, for the above example Kernel Miner
determined the pattern including 5 decision trees each of which
could be reformulated as the necessary and sufficient condition
for smurf records. Why did Kernel Miner select five trees? Why
not just choose one of them? The answer is that Kernel Miner
takes into account parameter of reliability for prediction. And it
was not mistaken. It is natural to assume that each necessary and
sufficient condition must be fulfilled at the exactly same records
of the test dataset. But this was not so. The first necessary and
sufficient condition was (continued after smurf figures…)

SIGKDD Explorations. Copyright 2000 ACM SIGKDD, January 2000. Volume 1, Issue 2 – page 69

Figure 1: Decision Tree No. 1 for “smurf” pattern

SIGKDD Explorations. Copyright 2000 ACM SIGKDD, January 2000. Volume 1, Issue 2 – page 70

Figure 2: Decision Tree No. 2 for “smurf” pattern

SIGKDD Explorations. Copyright 2000 ACM SIGKDD, January 2000. Volume 1, Issue 2 – page 71

fulfilled at 157,830 test records while the second one was fulfilled
at 157,846 test records. Of course, we see extremely insignificant
difference here, but we have considered this example for the
illustration purpose solely.

4.5 Prediction on the Test Dataset
Based upon the found patterns, Kernel Miner applied its
predictive modeling technique.

Kernel Miner single-valued determined the values (classes) of the
dependent variable for 305,596 test records out of a total number
of 311,029. Degree of confidence and parameter of reliability for
these predicted test examples were very high. For the rest 5,433
test records, Kernel Miner applied the sophisticated methods for
resolving conflicting cases.

The hardware used consisted of one PC (Pentium II 350 MHz)
with 128 MB of RAM.

It took in sum about 22 hours of machine time to complete the
whole process of finding all the patterns. Note that finding the
patterns for specific attack types took more than 70% of this time.
Prediction on the test dataset was very fast. It took about 20
minutes to read the data, and less than 5 minutes to recognize all
the test examples.

5. ANALYSIS OF RESULTS
Our prediction results achieved an average cost of 0.2356 per test
example and obtained the following confusion matrix:

(See Table 1)

The top-left element of the confusion matrix shows that 60,244 of
the actual "normal" test examples were predicted to be normal.
The last column indicates that in total 99.42 % of the actual
"normal" examples were recognized correctly. The bottom row
shows that 73.95 % of the test examples said to be "normal" were
indeed "normal" in reality.

A sum of diagonal elements of the confusion matrix indicates the
total number of the test examples that were predicted correctly.
So, Kernel Miner correctly recognized 289,006 out of 311,029
test examples, i.e. 92.92 %. A comparison between our and the
winning results shows that the total number of the test examples,
recognized correctly by Kernel Miner, is greater than the
corresponding number for the winning entry by 657 test examples
(289,006 versus 288,349). At the same time, Kernel Miner made
less misclassifications by 657 errors (22,023 versus 22,680).
However, we made more misclassifications in element (R2L,
Normal) of the confusion matrix (14,994 versus 14,527) which
were evaluated by the highest cost (see the cost matrix Table 3).
That is what caused the final result.

An analysis of our misclassifications shows that the majority of
them belong to the new attack types which were not in the training
data. There were in total 18,729 records belonging to such attack
types in the test dataset. 16,815 out of them were recognized
incorrectly by Kernel Miner, i.e. 89.8 %. More specifically,
16,387 records belonging to new attack types corresponded to the
"normal" pattern with a high probability, but all of them were not
indeed "normal" in reality. Perhaps, "something" existed that was
not found by us. But in this case, to recognize the discussed test
examples correctly, the new patterns and arguments must be
"stronger" than the patterns found for "normal" records.

If to remove the records labeled the new attack types from the test
dataset, then we get the following confusion matrix for Kernel
Miner’s results:

(See Table 2)

In this matrix we see the single large off-diagonal element,
namely, (R2L, Normal). That is, we made many (4804) errors
predicting "normal" for "R2L" records. Let us analyze this
situation. The majority of these records were labeled
"guess_passwd" in the test dataset (4110 out of 4804). Note that
in the training 10 % dataset, there were only 53 records labeled
"guess_passwd", i.e. only 0.01 % of all records. In spite of this,
Kernel Miner determined the likely precise pattern for such
records consisting of 10 decision trees. Each of these trees can be
reformulated as the sufficient and "almost" necessary condition
(although, of course, these trees are not independent). Here is two
of these trees (See Figure 3 and Figure 4).

Consider now 4110 test examples labeled "guess_passwd", where
we erroneously predicted "normal". All these records satisfied the
condition that they are not "guess_passwd". All the attack
categories said with confidence that these records do not belong to
them. And simultaneously, these records had different high
probabilities that they are normal. This is an explanation for our
prediction. Apparently, here we came across the overfitting
phenomenon - there were not enough "guess_passwd" records in
the training dataset, in order to trust the pattern determined based
upon them. In other words, the decision trees above overfit the
data. It is also probable that the "guess_passwd" examples are so
similar to "normal" connection records that the relevant formal
mathematical patterns simply don’t exist, and only the domain
knowledge of intrusion experts and their intuition may help in this
case.

(Continued after tables and guess_passwd figures…)

SIGKDD Explorations. Copyright 2000 ACM SIGKDD, January 2000. Volume 1, Issue 2 – page 72

Predicted

Actual

Normal Probe Dos U2R R2L Total % correct

Normal 60244 239 85 9 16 60593 99.42 %

Probe 458 3521 187 0 0 4166 84.52 %

Dos 5595 227 224029 2 0 229853 97.47 %

U2R 177 18 4 27 2 228 11.84 %

R2L 14994 4 0 6 1185 16189 7.32 %

Total 81468 4009 224305 44 1203 311029

% correct 73.95 % 87.83 % 99.88 % 61.36 % 98.50 %

Table 1: Confusion Matrix Obtained by Kernel Miner’s Entry

Predicted

Actual

Normal Probe Dos U2R R2L Total % correct

Normal 60244 239 85 9 16 60593 99.42 %

Probe 4 2370 3 0 0 2377 99.71 %

Dos 10 10 223278 0 0 223298 99.99 %

U2R 19 0 0 18 2 39 46.15 %

R2L 4804 3 0 4 1182 5993 19.72 %

Total 65081 2622 223366 31 1200 292300

% correct 92.57 % 90.39 % 99.96 % 58.07 % 98.50 %

Table 2: Confusion Matrix for Known Attack Types

Predicted

Actual

Normal Probe Dos U2R R2L

Normal 0 1 2 2 2

Probe 1 0 2 2 2

Dos 2 1 0 2 2

U2R 3 2 2 0 2

R2L 4 2 2 2 0

Table 3: Cost Matrix

SIGKDD Explorations. Copyright 2000 ACM SIGKDD, January 2000. Volume 1, Issue 2 – page 73

Figure 3: Decision Tree No. 1 for guess_passwd pattern

SIGKDD Explorations. Copyright 2000 ACM SIGKDD, January 2000. Volume 1, Issue 2 – page 74

Figure 4: Decision Tree No. 2 for guess_passwd pattern

SIGKDD Explorations. Copyright 2000 ACM SIGKDD, January 2000. Volume 1, Issue 2 – page 75

6. CONCLUSION
Kernel Miner is a new data-mining tool, and this was the first
competition in which we participated. Our KDD CUP success has
confirmed correctness and fundamental character of a series of
new and known ideas that have been realized in our tool. The
present version of the application is ready-to-use. At the same
time, it should be noted that Kernel Miner is continually
developing tool, and a series of our new additional methods and
algorithms (including the parallel ones) are planned to be realized
in the next versions of the tool.

About the author:

Itzhak Levin, M.Sc. in Applied Mathematics and Automized
Information Systems, founded LLSoft Inc. in 1999. He is
currently a CEO of LLSoft. The company specializes in the
development of mathematical algorithms and software mainly for
data mining and knowledge discovery area.

