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ABSTRACT 

Kernel Miner is a new data-mining tool based on building the 
optimal decision forest. The tool won second place in the KDD’99 
Classifier Learning Contest, August 1999. We describe the Kernel 
Miner’s approach and method used for solving the contest task. 
The received results are analyzed and explained. 
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1. KERNEL MINER 
Kernel Miner is a data-mining tool for the description, 
classification and generalization of data, and for predicting the 
new cases. Kernel Miner is a fully automated tool that provides 
solutions to database users. Although Kernel Miner applies a 
system of sophisticated mathematical models and algorithms, it is 
extremely simple for users. The tool has been developed for 
Windows 95/98/NT and works with different databases such as 
dBase, MS Access, SQL Server, Oracle, etc. directly or through 
ODBC or OLEDB. 

2. GENERAL MODEL AND ALGORITHM 
Kernel Miner is based upon the global optimization model 
developed. This global model is then decomposed into a system of 
interrelated, intercoordinated and interconsistent models and 
criteria. As a result, Kernel Miner constructs the set of locally 
optimal decision trees (the decision forest) from which it selects 
the optimal subset of trees (the subforest) used for predicting the 
new cases.  

The predictive modeling technique is based on sophisticated 
methods for reduction of individual prediction results received 
from individual classification trees. This enables us to calculate 
the value of the global optimization criterion for any subset of 
trees.  

The global optimization criterion is to minimize a value of the 
multiple estimator including the total cost of misclassifications, 
and taking into account parameters of reliability and stability for 
prediction. Here the notion of stability is analogous to the 
corresponding concept applied in the mathematical programming 
theory. Taking into account the parameters of reliability and 
stability for prediction enables us to avoid the overfitting problem.  

Each constructed decision tree "covers" all the examples of the 
training data set. It is optimal in the sense of minimizing the 
above criterion given the initial "good" partition. To find the set 
of such partitions, a special optimization task is solved on the set 
of two- and three-dimensional contingency tables, where the last 

dimension is the dependent variable. Note that, in particular, the 
"good" partition can be defined by the found function of two 
independent numeric variables, so that the discretization of values 
of this function separates the values (classes) of the dependent 
variable "well". The notion of a "good" (and the best) splitting is 
used at different stages of the algorithm and is based upon a 
proprietary measure. The number of classification trees to be built 
is equal to the number of found initial "good" partitions. Although 
each decision tree is built optimal, we call it locally optimal 
because it is generally not unique element of the final optimal 
decision subforest. In particular (in the simplest cases), the 
optimal subforest may consist of one tree. 

3. TASK 
The task for the KDD’99 Classifier Learning Contest was to create 
a predictive model capable of distinguishing between legitimate 
(normal) and illegitimate (called intrusions or attacks) connections 
in a computer network. The training dataset consisted of about 
5,000,000 connection records, and the training 10% dataset 
contained 494,021 records among which there were 97,278 
normal connection records (i.e. 19.69 %). Each record contained 
values of 41 independent variables (fields) which described the 
different features of the connection, and the value of the 
dependent variable labeled as either normal, or as an attack, with 
exactly one specific attack type. Each attack type belonged to one 
of the following 4 categories:  

1) probe, i.e. surveillance and other probing;  

2) DOS, i.e. denial of service;  

3) U2R, i.e. use-to-root;  

4) R2L, i.e. remote-to-local.  

The competitors were asked to predict the value of the dependent 
variable (normal or one of the above attack categories) for each 
record of the test dataset consisting of 311,029 records. The 
specific character of the task consisted of the following:  

1. The test data was not from the same probability distribution as 
the training data.  

2. The test data included specific attack types not in the training 
data.  

3. It was required to predict attack categories while in the training 
dataset the attack types were also given. 

4. APPROACH AND METHOD USED 
We omitted a preprocessing stage for a lack of the domain 
knowledge. Fortunately, this was not required since Kernel Miner 
is able to find a full solution to the task automatically. All we 
specified was the matrix of misclassification costs.  
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We searched for the required patterns on the available training 
10% dataset consisting of 494,021 records, for the following 
reasons: 1) The hypothesis that the training 10% dataset had been 
randomly chosen from the entire training dataset, was beforehand 
verified, and it was corroborated. 2) Taking into consideration 
that the number of independent variables as well as the number of 
different values of the dependent variable in the training dataset 
were relatively small, the available 10% dataset contained the 
quite sufficient number of records in order to construct the stable 
patterns and to draw the conclusions. 3) It was not required to 
create numerous samples in order to imitate the different 
probability distributions for the test data, since the Kernel Miner’s 
predictive modeling technique does not assume that a test data 
must be from the same probability distribution as the training 
data. 4) The patterns found on the training 10% dataset were 
clear, precise, and stable. This could not be by chance. Moreover, 
this was also corroborated by the very high accuracy of prediction 
on the whole 5-million training dataset. If at least one of the 
above-mentioned facts did not take place, we would supplement 
our analysis with an investigation of the entire training dataset 
and/or different samples. 

Kernel Miner’s modeling automatic process consisted of the 
following stages: 

4.1 Coding of Values of Variables 
Note that in Kernel Miner the unique discretization for each 
numeric attribute doesn’t exist. Discretization is carried out at 
each step of constructing any tree in an optimal way. This is 
necessary to ensure maximum possibilities for the further 
optimization. 

4.2 Constructing the Set of Initial “Good” 
Partitions 
Note that "goodness" of the initial partition is defined by not only 
the "goodness" of this partition itself but, finally, by the 
"goodness" of the decision tree to be constructed. Hence, it is 
important not to miss any initial "good" partition. Moreover, for 
example, the discussed set for the "normal" category significantly 
differed from the sets of initial partitions for each of the attack 
categories. Therefore, Kernel Miner constructed a broad set of 
such partitions (and consequently, trees), and only at the final 
stage selected the optimal subset of them. This is similar to seed 
selection - the best tree does not always grow from the best of 
available seeds.  

The specific character of the task required to build trees not only 
for the different categories but for the specific attack types as well. 
Consider why this was necessary. The general pattern for each 
category was necessary for prediction since the test data included 
specific attack types not in the training data. This is one but not a 
single reason. At the same time, the majority of the known attack 
types were described by very precise patterns. The existence and 
joint application of general and special patterns sharply increased 
a confidence level of the prediction results. 

4.3 Constructing the Decision Trees 
After the selected seeds (the conditions defining the initial "good" 
partitions) had been sowed, Kernel Miner constructed an optimal 
tree from each of them. (Note that a proprietary criterion for 
"goodness" of a tree is mutually consistent with the global 
optimization criterion.) Each constructed tree "explained" all the 

records of the training data set. The decision forest that was built 
by Kernel Miner, contained in total 218 decision trees for 
categories (including the normal one), and 537 decision trees for 
specific attack types.  

For example, consider the attack type "smurf" belonging to DOS 
category.  

In the training 10% dataset more than half of all records (280790, 
or 56.8%) were labeled "smurf". Here is only two simplest trees 
each of which in a one-to-one manner defines the smurf records 
(see Figure 1 and Figure 2).  

Note that each of these trees can be reformulated as the necessary 
and sufficient condition for existence of smurf records. For 
example, the first tree says that:  

the type is "smurf" if and only if (519 < src_bytes <= 1032) and 
(service is ecr_i) .  

Of course, all was not so simple. The majority of trees constructed 
were of substantially more complex structure, and did not enable 
the program to draw such one-valued conclusions. The volume 
restriction does not allow us to consider solving the task in details 
here. 

4.4 Selection of the Optimal Decision 
Subforest 
Now, like a sculptor, Kernel Miner must cut off superfluous. To 
solve this problem, Kernel Miner applied a fast approximate 
algorithm developed for solving the zero-one integer 
programming model. As a result, the clear patterns were 
determined for each category and the majority of specific attack 
types. For instance, for the above example Kernel Miner 
determined the pattern including 5 decision trees each of which 
could be reformulated as the necessary and sufficient condition 
for smurf records. Why did Kernel Miner select five trees? Why 
not just choose one of them? The answer is that Kernel Miner 
takes into account parameter of reliability for prediction. And it 
was not mistaken. It is natural to assume that each necessary and 
sufficient condition must be fulfilled at the exactly same records 
of the test dataset. But this was not so. The first necessary and 
sufficient condition was (continued after smurf figures…)  
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Figure 1: Decision Tree No. 1  for “smurf” pattern
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Figure 2: Decision Tree No. 2  for “smurf” pattern 
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fulfilled at 157,830 test records while the second one was fulfilled 
at 157,846 test records. Of course, we see extremely insignificant 
difference here, but we have considered this example for the 
illustration purpose solely. 

4.5 Prediction on the Test Dataset 
Based upon the found patterns, Kernel Miner applied its 
predictive modeling technique.  

Kernel Miner single-valued determined the values (classes) of the 
dependent variable for 305,596 test records out of a total number 
of 311,029. Degree of confidence and parameter of reliability for 
these predicted test examples were very high. For the rest 5,433 
test records, Kernel Miner applied the sophisticated methods for 
resolving conflicting cases.  

The hardware used consisted of one PC (Pentium II 350 MHz) 
with 128 MB of RAM.  

It took in sum about 22 hours of machine time to complete the 
whole process of finding all the patterns. Note that finding the 
patterns for specific attack types took more than 70% of this time. 
Prediction on the test dataset was very fast. It took about 20 
minutes to read the data, and less than 5 minutes to recognize all 
the test examples. 

5. ANALYSIS OF RESULTS 
Our prediction results achieved an average cost of 0.2356 per test 
example and obtained the following confusion matrix: 

(See Table 1) 

The top-left element of the confusion matrix shows that 60,244 of 
the actual "normal" test examples were predicted to be normal. 
The last column indicates that in total 99.42 % of the actual 
"normal" examples were recognized correctly. The bottom row 
shows that 73.95 % of the test examples said to be "normal" were 
indeed "normal" in reality.  

A sum of diagonal elements of the confusion matrix indicates the 
total number of the test examples that were predicted correctly. 
So, Kernel Miner correctly recognized 289,006 out of 311,029 
test examples, i.e. 92.92 %. A comparison between our and the 
winning results shows that the total number of the test examples, 
recognized correctly by Kernel Miner, is greater than the 
corresponding number for the winning entry by 657 test examples 
(289,006 versus 288,349). At the same time, Kernel Miner made 
less misclassifications by 657 errors (22,023 versus 22,680). 
However, we made more misclassifications in element (R2L, 
Normal) of the confusion matrix (14,994 versus 14,527) which 
were evaluated by the highest cost (see the cost matrix Table 3). 
That is what caused the final result.  

An analysis of our misclassifications shows that the majority of 
them belong to the new attack types which were not in the training 
data. There were in total 18,729 records belonging to such attack 
types in the test dataset. 16,815 out of them were recognized 
incorrectly by Kernel Miner, i.e. 89.8 %. More specifically, 
16,387 records belonging to new attack types corresponded to the 
"normal" pattern with a high probability, but all of them were not 
indeed "normal" in reality. Perhaps, "something" existed that was 
not found by us. But in this case, to recognize the discussed test 
examples correctly, the new patterns and arguments must be 
"stronger" than the patterns found for "normal" records.  

If to remove the records labeled the new attack types from the test 
dataset, then we get the following confusion matrix for Kernel 
Miner’s results:  

(See Table 2) 

In this matrix we see the single large off-diagonal element, 
namely, (R2L, Normal). That is, we made many (4804) errors 
predicting "normal" for "R2L" records. Let us analyze this 
situation. The majority of these records were labeled 
"guess_passwd" in the test dataset (4110 out of 4804). Note that 
in the training 10 % dataset, there were only 53 records labeled 
"guess_passwd", i.e. only 0.01 % of all records. In spite of this, 
Kernel Miner determined the likely precise pattern for such 
records consisting of 10 decision trees. Each of these trees can be 
reformulated as the sufficient and "almost" necessary condition 
(although, of course, these trees are not independent). Here is two 
of these trees (See Figure 3 and Figure 4).  

Consider now 4110 test examples labeled "guess_passwd", where 
we erroneously predicted "normal". All these records satisfied the 
condition that they are not "guess_passwd". All the attack 
categories said with confidence that these records do not belong to 
them. And simultaneously, these records had different high 
probabilities that they are normal. This is an explanation for our 
prediction. Apparently, here we came across the overfitting 
phenomenon - there were not enough "guess_passwd" records in 
the training dataset, in order to trust the pattern determined based 
upon them. In other words, the decision trees above overfit the 
data. It is also probable that the "guess_passwd" examples are so 
similar to "normal" connection records that the relevant formal 
mathematical patterns simply don’t exist, and only the domain 
knowledge of intrusion experts and their intuition may help in this 
case.  

(Continued after tables and guess_passwd figures…) 
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Predicted 

Actual 

Normal Probe Dos U2R R2L Total % correct 

Normal 60244 239 85 9 16 60593 99.42 % 

Probe 458 3521 187 0 0 4166 84.52 % 

Dos 5595 227 224029 2 0 229853 97.47 % 

U2R 177 18 4 27 2 228 11.84 % 

R2L 14994 4 0 6 1185 16189 7.32 % 

Total 81468 4009 224305 44 1203 311029  

% correct 73.95 % 87.83 % 99.88 % 61.36 % 98.50 %   

 

Table 1: Confusion Matrix Obtained by Kernel Miner’s Entry 

 

 

 

 

Predicted 

Actual 

Normal Probe Dos U2R R2L Total % correct 

Normal 60244 239 85 9 16 60593 99.42 % 

Probe 4 2370 3 0 0 2377 99.71 % 

Dos 10 10 223278 0 0 223298 99.99 % 

U2R 19 0 0 18 2 39 46.15 % 

R2L 4804 3 0 4 1182 5993 19.72 % 

Total 65081 2622 223366 31 1200 292300  

% correct 92.57 % 90.39 % 99.96 % 58.07 % 98.50 %   

 

Table 2: Confusion Matrix for Known Attack Types 

 

 

 

 

Predicted 

Actual 

Normal Probe Dos U2R R2L 

Normal 0 1 2 2 2 

Probe 1 0 2 2 2 

Dos 2 1 0 2 2 

U2R 3 2 2 0 2 

R2L 4 2 2 2 0 

 

Table 3: Cost Matrix
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Figure 3: Decision Tree No. 1 for guess_passwd pattern 
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Figure 4: Decision Tree No. 2 for guess_passwd pattern
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6. CONCLUSION 
Kernel Miner is a new data-mining tool, and this was the first 
competition in which we participated. Our KDD CUP success has 
confirmed correctness and fundamental character of a series of 
new and known ideas that have been realized in our tool. The 
present version of the application is ready-to-use. At the same 
time, it should be noted that Kernel Miner is continually 
developing tool, and a series of our new additional methods and 
algorithms (including the parallel ones) are planned to be realized 
in the next versions of the tool.  
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