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ABSTRACT 
This article points out some very serious misconceptions about 
the brain in connectionism and artificial neural networks. 
Some of the connectionist ideas have been shown to have 
logical flaws, while others are inconsistent with some 
commonly observed human learning processes and behavior. 
For example, the connectionist ideas have absolutely no 
provision for learning from stored information, something that 
humans do all the time. The article also argues that there is 
definitely a need for some new ideas about the internal 
mechanisms of the brain. It points out that a very convincing 
argument can be made for a "control theoretic" approach to 
understanding the brain. A "control theoretic" approach is 
actually used in all connectionist and neural network 
algorithms and it can also be justified from recent 
neurobiological evidence.  A control theoretic approach 
proposes that there are subsystems within the brain that control 
other subsystems. Hence a similar approach can be taken in 
constructing learning algorithms and other intelligent systems. 
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1.   INTRODUCTION 
The fields of data warehousing, data mining, robotics and 
intelligent engineering systems are interested in tools that can 
automate the process of knowledge discovery and learning of 
rules from data. “Automate the process” in this context 
implies tools and algorithms that obviate the need for external 
human intervention of any kind, beyond the specification of 
the problem at hand, in order to guide the detailed algorithmic 
processes. In the case of unsupervised learning or clustering, 
“specification of the problem” would mean providing a body 
of data that is to be grouped into classes. In the case of 
supervised learning for pattern classification, “specification of 
the problem” would mean providing a body of data that has 
the classification information for each data point and, perhaps, 
nothing else, unless classification errors of a certain type are to 
be avoided or reduced. This model of problem specification 
reflects the way humans learn; humans learn rules and discover 
knowledge based on this type of information and nothing 
more. Humans don’t require any outside control of the 
learning processes in the brain. Because of these  
 
characteristics (of human learning), the fields of data mining, 
robotics and intelligent engineering systems look towards the 
science of artificial neural networks and connectionism to 

provide them with the tools for human-like automated, 
autonomous learning. Unfortunately, in spite of decades of 
research, the science of artificial neural networks and 
connectionism failed to deliver those tools. This article is 
about why they failed, pointing out the major flaws in their 
basic underlying concepts and assumptions. 
 
A glaring and fundamental weakness in the current theories of 
artificial neural networks and connectionism is the total 
absence of the concept of an autonomous system. As a result, 
the field developed learning algorithms over the years that 
work well only when there is human intervention. In other 
words, their learning algorithms need constant baby-sitting in 
order for them to work - learning rates need to be reset and 
readjusted, various network designs need to be tried so that 
they can generalize well, starting points need to be reset when 
they get stuck in a local minimum, and everything needs to be 
relearned from scratch when there is catastrophic forgetting in 
the network. And the list goes on. These are some of the 
common problems in both supervised and unsupervised neural 
network learning. One cannot even imagine including these 
learning algorithms in future robots and other knowledge 
discovery and learning systems, whatever kind they maybe, 
that are supposed to be autonomous and learn on their own. 
One cannot have autonomous intelligent systems without 
autonomous learning algorithms.  
 

1.1   The Debate about How the Brain 
Learns 

Can a whole body of science simply unravel when confronted 
by a few simple questions? Can a large body of scientists 
overlook some very simple facts for a long period of time? 
From the current debate on how the brain learns, the answer 
appears to be “yes” for at least one body of science – artificial 
neural networks and connectionism. A sampling of some 
recent comments might be a good indicator of this. The first 
open and public admission that much of the existing science is 
wrong came from Christoph von der Malsburg, a German 
neurobiologist and computer scientist affiliated with both the 
Ruhr University of Germany and the University of Southern 
California. In commenting on the challenge I posed, which 
claimed that neural networks do not embody brain-like 
learning, he remarked,"I strongly believe that the current 
paradigm of neural network learning misses very essential 
aspects of the learning problem, and I totally concur with the 
assessment, expressed in your expose, that specific prior 
knowledge is required as a basis for learning from a given 
domain….I am glad the issue seems to start picking up 
momentum. Some Kuhnian revolution is required here, and as 
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he (T. Kuhn) wrote, such scientific revolutions are always 
preceded by rising unrest in the community.." And Malsburg is 
one of the founders of this field. Another founder of this field 
and a past president of the International Neural Network 
Society (INNS) confided to me that “the neuro-boom is over.” 
But many other scholars have kept on fighting the arguments 
against the current science on brain-like learning. Another past 
president of INNS publicly disagreed with me at the recent 
debate in Alaska, saying: “In brief, I disagree with everything 
he (Asim Roy) said.”  
 
Many distinguished scholars have participated in the three 
open, public debates at the last two international conferences 
on neural networks. These debates centered on various aspects 
of brain-like learning as discussed later in this article. The first 
debate at the International Conference on Neural Networks 
(ICNN’97) in Houston, Texas in June, 1997, included four past 
presidents of INNS and five of the plenary speakers. The 
second debate at the World Congress on Computational 
Intelligence (WCCI’98) in Anchorage, Alaska in May, 1998, 
included five past presidents of INNS. The third debate at the 
International Joint Conference on Neural Networks 
(IJCNN'99) in Washington, D.C., in July, 1999 included 
several neuro and cognitive scientists, including three past 
presidents of INNS. A summary of the first debate has been 
published in the INNS Newsletter of May, 1998 [13], and on 
the Internet through various neural network-related mailing 
lists.  
 
The debate about connectionism is nothing new. The argument 
between the symbol system hypothesis of artificial intelligence 
and the massively parallel system conjecture of artificial neural 
networks or connectionism has still not abated. Marvin Minsky 
of MIT characterized connectionism as “naïve” at the first 
international conference on neural networks in San Diego in 
1988. And Minsky and Seymour Papert not only showed the 
limitations of the earlier simple neural networks, the 
perceptrons, but were also the first ones to raise the deeper 
question of computational complexity of learning algorithms 
(“Epilogue: The New Connectionism” in [8]). But the neural 
network field moved along heedlessly with its research agenda, 
ignoring all the deeper and more disturbing questions raised by 
thoughtful critics. However, a scientific field is destined to 
stumble sooner or later when it tries to skirt legitimate 
questions about its founding ideas. Now faced with 
fundamental challenges to the assumptions behind their brain-
like learning algorithms, prominent researchers in the field are 
finally calling for a “shake up of the field of neural networks” 
and for its “rebirth.” 
 

2.   SOME BACKGROUND 
INFORMATION ON ARTIFICIAL 
NEURAL NETWORKS 

Connectionism or artificial neural networks (ANN) is the field 
of science that tries to replicate brain-like computing. The 
brain is understood to use massively parallel computations 
where each computing element (a neuron or brain cell in the 
terminology of this science) in the massively parallel system is 
envisioned to perform a very simple computation, such as yi = 
f(zi), where zi is assumed to be a real valued input, yi is either a 
binary or a real valued output of the ith neuron, and f a 

nonlinear function (see Figure 1). The nonlinear function f, 
also called a node function, takes different forms in different 
models of the neuron; a typical choice for the node function is 
a step function or a sigmoid function. The neurons get their 
input signals from other neurons or from external sources such 
as various organs of the body like the eyes, the ears and the 
nose. The output signal from a neuron may be sent to other 
neurons or to another organ of the body.  
 

 
 
Studies in neuroscience and neurobiology show that different 
parts of the brain perform different tasks such as storage of 
short or long term memory, language comprehension, object 
recognition and so on. A particular task is performed by a 
particular network of cells (hence the term neural networks) 
designed and trained for that task through the process of 
learning or memorization. These networks, when invoked to 
perform a particular task, then send their outputs to other parts 
of the brain or to an organ of the body.  
 
A network can have many layers of neurons, where the outputs 
of one layer of neurons become the inputs to the next layer of 
neurons. And a network can have more than one output signal; 
thus the output layer can have more than one neuron. Different 
neural network models assume different modes of operation 
for the network, depending somewhat on the function to be 
performed. A neural network model for pattern classification is 
often conceived to be a feedforward type network where the 
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input signals are propagated through different layers of the 
network to produce outputs at the output layer. On the other 
hand, a neural network model for memory is often conceived 
to be of the feedback type (also called a recurrent network or a 
nonlinear dynamical system) where the outputs of the network 
are fed back to the network as inputs. This process of feedback 
continues until the network converges to a stable set of output 
values or continuously cycles among a fixed set of output 
values.  
 
Let xi = (xi1, xi2, ... , xin) be the vector of input signals to the ith 
neuron, the inputs signals being from other neurons in the 
network or from external sources. Neural network models 
assume that each input signal xij to ith neuron is “weighted” by 
the strength of the ith neuron’s connection to the jth source, wij. 
The weighted inputs, wij xij, are then summed to form the 
actual input zi to the node function f at the ith neuron: zi = Σ wij 
xij + θi, where θi is a constant, called the threshold value. As 
mentioned before, some typical node functions are (1) the step 
function, where f(zi) = 1 if zi ≥ 0, and f(zi) = 0 otherwise, and 
(2) the sigmoid function, where f(zi) = 1/(1 + e- zi). 
 
A network of neurons is made to perform a certain task 
(memory, classification and so on) by designing and training 
an appropriate network through the process of learning or 
memorization. The design of a network involves determining 
(a) the number of layers to use, (b) the number of neurons to 
use in each layer, (c) the connectivity pattern between the 
layers and neurons, (d) the node function to use at each neuron, 
and (e) the mode of operation of the network (e.g. feedback vs. 
feedforward). The training of a network involves determining 
the connection weights [wij] and the threshold values [θi] from 
a set of training examples. For some learning algorithms like 
back-propagation [14,15], the design of the network is 
provided by the user or some other external source. For other 
algorithms like Adaptive Resonance Theory (ART) [5], 
reduced coulomb energy (RCE) [10], and radial basis function 
(RBF) networks [9], the design of the network is accomplished 
by the algorithm itself, although other parameter values have 
to be supplied to the algorithm on a trial and error basis to 
perform the design task.  
 
The training of a network is accomplished by adjusting the 
connection weights [wij] by means of a local learning law. A 
local learning law is a means of gradually changing the 
connection weights by an amount ∆wij after observing each 
training example. A learning law is based on the general idea 
that a network is supposed to perform a certain task and that 
the weights have to be set such that the error in the 
performance of that task is minimized. A learning law is local 
because it is conceived that the individual neurons in the 
network are the ones making the changes to their connection 
weights or connection strengths, based on the error in their 
performance. Local learning laws are a direct descendent of 
the idea that the cells or neurons in the brain are autonomous 
learners. The idea of “autonomous learners” is derived, in turn, 
from the notion that there is no homunculus or “a little man” 
inside the brain that “guides and controls” the behavior of 
different cells in the brain. The “no homunculus” argument 
says that there couldn’t exist a distinct and separate physical 
entity in the brain that governs the behavior of other cells in 
the brain. In other words, as the argument goes, there are no 

“ghosts” in the brain. So any notion of “extracellular control” 
of synaptic modification (connection weight changes) is not 
acceptable to this framework. Many scientists support this 
notion (of cells being autonomous learners) with examples of 
physical processes that occur without any external “control” of 
the processes, such as a hurricane. 
 
So, under the connectionist theory of learning, the connection 
weight wij(t), after observing the tth training example, is given 
by: wij(t) = wij(t-1) + ∆wij(t), where ∆wij(t)  is the weight 
adjustment after the tth example and is determined by a local 
learning law. Donald Hebb [6] was the first to propose a 
learning law for this field of science and much of the current 
research on neural networks is on developing new learning 
laws. There are now hundreds of local learning laws, but the 
most well-known among them are back-propagation [14,15], 
ART [5] and RBF networks [9]. To give an example, the back 
propagation learning law is as follows: ∆wij(t) = - η(∂E/∂ 
wij(t)) + α∆wij(t-1). Here η is the learning rate (step size) for 
the weight update at step t and α is a momentum gain term. E 
is the mean-square error of the whole network based on some 
desired outputs, in a supervised mode of learning, where a 
teacher is present to indicate what the correct output should be 
for any given input. Back-propagation is a steepest descent 
algorithm and -∂E/∂ wij(t) is the steepest descent direction 
(negative of the gradient). 
 

2.1   The Distinction between Memory 
and Learning 

Two of the main functions of the brain are memory and 
learning. There are of course many categories of memory 
(short term, medium term, long term, working memory, 
episodic memory and so on) and of learning (supervised, 
unsupervised, inductive, reinforcement and so on). In order to 
characterize the learning behavior of the brain, it is necessary 
to distinguish between these two functions. Learning generally 
implies learning of rules from examples. Memory, on the other 
hand, implies simple storing of facts and information for later 
recall (e.g. an image, a scene, a song, an instruction). 
Sometimes these terms are used interchangeably in the 
literature, and in everyday life: memory is often confused with 
learning. But the processes of memorization are different from 
that of learning. So memory and learning are not the same.  
 
2.2   Learning or Generalization from 

Examples 
Learning of rules from examples involves generalization. 
Generalization implies the ability to derive a succinct 
description of a phenomenon, using a simple set of rules or 
statements, from a set of observations of the phenomenon. So, 
in this sense, the simpler the derived description of the 
phenomenon, the better is the generalization. For example, 
Einstein's E = MC2 is a superbly succinct generalization of a 
natural phenomenon. And this is the essence of learning from 
examples. So any brain-like learning algorithm must exhibit 
this property of the brain - the ability to generalize. That is, it 
must demonstrate that it makes an explicit attempt to 
generalize and learn. In order to generalize, the learning 
system must have the ability to design the appropriate network.  
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3.   THE PROBLEMS OF 
CONNECTIONISM - SOME 
MAJOR MISCONCEPTIONS 
ABOUT THE BRAIN 

 
3.1   A Misconception - No Synaptic 

Change Signals are allowed to the 
Cells from Other Sources within the 
Brain 

The notion that each neuron or cell in the brain is an 
“autonomous/independent learner” is one of the fundamental 
notions of this field. Under this notion, it is construed that 
individual cells modify their synaptic strengths (connection 
weights) solely on the basis of their “input and output 
behavior.” The input and output information of a cell may 
include information about the error in the performance of a 
given task by the network and an individual cell’s contribution 
to that error; see for example the back-propagation learning 
law in the last section. This notion implies that no other 
physical entity external to the cell is allowed to “signal” it to 
adjust its connection strengths in a certain way. All of the well-
known local learning laws developed to date most faithfully 
adhere to this notion [2, 3, 5, 6, 7, 9, 10, 14, 15]. However, 
there is no neurobiological evidence to support this premise. In 
fact, there is a growing body of evidence that says that 
extrasynaptic neuromodulators influence synaptic adjustments 
“directly” [7]. The neurobiological evidence shows that there 
are many different neurotransmitters and receptors and many 
different cellular pathways for them to affect cellular changes. 
Cellular mechanisms within the cell are used to convert these 
“extracellular” signals into long-lasting changes in cellular 
properties. So the connectionist conjecture that no other 
physical entity directly signals changes to a cell’s behavior is a 
major misconception about the brain. Beyond the 
neurobiological evidence, this conjecture is also logically 
inconsistent, as discussed later.  
 

3.2   Another Misconception - The Brain 
Does Not Collect and Store Any 
Information about the Problem Prior 
to Actual Learning 

In connectionism, brain-like learning algorithms cannot store 
any training examples (or any other information, for that 
matter) explicitly in its memory - in some kind of working 
memory, that is, that can be readily accessed by the learning 
system in order to learn [2, 3, 5, 6, 7, 9, 10, 14, 15]. The 
learning system can use any particular training example 
presented to it to adjust whatever network it is learning in, but 
must forget that example before examining others. This is the 
so-called “memoryless learning” property, where no storage of 
facts/information is allowed. The idea is to obviate the need for 
large amounts of memory to store a large number of training 
examples or other information. Although this process of 
learning is very memory efficient, it can be very slow and 
time-consuming, requiring lots of training examples, as 
demonstrated in [11,12]. However, the main problem with this 
notion of memoryless learning is that it is completely 

inconsistent with the way humans actually learn; it violates 
very basic behavioral facts. Remembering relevant facts and 
examples is very much a part of the human learning process; it 
facilitates mental examination of facts and information that is 
the basis for all human learning. And in order to examine facts 
and information and learn from it, humans need memory, they 
need to remember facts. But connectionism has no provision 
for it. 
 
There are other logical problems with the idea of memoryless 
learning. First, one cannot learn (generalize, that is) unless one 
knows what is there to learn (generalize). And one can find out 
what is there to learn "only by" collecting and storing some 
information about the problem at hand. In other words, no 
system, biological or otherwise, can "prepare" itself to learn 
without having some information about what is there to learn 
(generalize). And in order to generalize well, one has to look at 
a whole body of information relevant to the problem, not just 
bits and pieces of information at a time as is allowed in 
memoryless learning. So the notion of “memoryless learning” 
is a very serious misconception in these fields, and is totally 
inconsistent with external observations of the human learning 
process. 
 

3.3   A Third Misconception - The Brain 
Learns Instantly from Each and 
Every Learning Example Presented 
to it 

A major dilemma for this field is explaining the fact that 
sometimes human learning is not instantaneous, but may occur 
much later, perhaps at a distant point in time, based on 
information already collected and stored in the brain. The 
problem lies with the fundamental belief in the connectionist 
school that the brain learns “instantaneously.” Instantaneous, 
that is, in the sense that it learns promptly from each and every 
learning example presented to it by adjusting the relevant 
synaptic strengths or connection weights in the network. And it 
even learns from the very first example presented to it! The 
learning, as usual, is accomplished by individual neurons using 
some kind of a "local learning law." Note that “instantaneous 
learning” is simply a reflection of “memoryless learning;” just 
the opposite side of the same coin. 
 

3.4   A Fourth Misconception - The 
Networks Are Predesigned and 
Externally Supplied to the Brain; 
And the Learning Parameters Are 
Externally Supplied Too 

Another major dilemma for this field is explaining the fact that 
a network design, and other types of algorithmic information, 
has to be externally supplied to some of their learning systems, 
whereas no such information is externally supplied to the 
human brain. In fact, not just one, but many different network 
designs (and other parameter values) are often supplied to 
these learning systems on a trial and error basis in order for 
them to learn [5, 9, 10, 14, 15]. However, as far as is known, 
no one has been able to supply any network design or learning 
parameter values to a human brain. Plus, the whole idea of 
“instantaneous and memoryless learning” is completely 
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inconsistent with their trial and error learning processes; there 
is supposed to be no storage of learning examples in these 
systems for such a trial and error process to take place. In other 
words, no such trial and error process can take place unless 
there is memory in the system, which they disallow. 
 
In order for humans to generalize well in a learning situation, 
the brain has to be able to design different networks for 
different problems - different number of layers, number of 
neurons per layer, connection weights and so on - and adjust 
its own learning parameters. The networks required for 
different problems are different, it is not a “same size fits all” 
type situation. So the networks cannot come “pre-designed” in 
the brain; they cannot be inherited for every possible 
“unknown” learning problem faced by the brain on a regular 
basis. Since no information about the design of a network is 
ever supplied to the brain, it implies that network design is 
performed internally by the brain. Thus, it is expected that any 
brain-like learning system must also demonstrate the same 
ability to design networks and adjust its own learning 
parameters without any outside assistance. But the so-called 
autonomous learning systems of connectionism depend on 
external sources to provide the network design to them [14, 
15]; hence they are inherently incapable of generalizing 
without external assistance. This implies again that 
connectionist learning is not brain-like at all. 
 

3.5   Other Logical Problems with 
Connectionist Learning 

There are other logical problems with these connectionist 
ideas. Strict autonomous local learning implies pre-definition 
of a network "by the learning system" without having seen a 
single training example and without having any knowledge at 
all of the complexity of the problem. There is no system, 
biological or otherwise, that can do that in a meaningful way; 
it is not a “feasible idea” for any system. The other fallacy of 
the autonomous local learning idea is that it acknowledges the 
existence of a "master system” that provides the network 
design and adjusts the learning parameters so that the 
autonomous learners can learn. So connectionism’s 
autonomous learners, in the end, are directed and controlled 
by other sources after all! So these connectionist ideas 
(instantaneous learning, memoryless learning and autonomous 
local learning) are completely illogical, misconceived and 
incompatible with what can be externally observed of the 
human learning process. 
 

4.   CONCLUSIONS 
One of the "large" missing pieces in the existing theories of 
artificial neural networks and connectionism is the 
characterization of an autonomous learning system such as the 
brain. Although Rumelhart [15] and others have clearly 
defined (conjectured) the “internal mechanisms” of the brain, 
no one has characterized in a similar manner the external 
behavioral characteristics that they are supposed to produce. 
As a result, the field pursued algorithm development largely 
from an "internal mechanisms" point of view (local, 
autonomous learning, memoryless learning, and instantaneous 
learning) rather than from the point of view of "external 
behavioral characteristics" of human learning. That flaw is 
partly responsible for its current troubles. It is essential that 

the development of brain-like learning algorithms be guided 
primarily by the need to reproduce a set of sensible, well-
accepted external characteristics. If that set of external 
characteristics cannot be reproduced by a certain conjecture 
about the internal mechanisms, than that conjecture should not 
be valid. 
 
This article essentially described some of the prevailing 
notions of connectionism and showed their logical 
inconsistencies and how they fail to properly account for some 
very basic aspects of human learning. So there is definitely a 
need for some new ideas about the internal mechanisms of the 
brain. From the last three debates and based on evidence from 
experimental psychology and neurobiology, it appears that a 
very convincing argument can be made that there are 
subsystems within the brain that control other subsystems. 
This “control theoretic” notion, which allows external sources 
to directly control a cell’s behavior and perform other tasks, is 
finding growing acceptance among scientists [13]. This notion 
has many different labels at this point: non-local means of 
learning, global learning and so on. It would not be fair if it is 
not acknowledged that such control theoretic notions are 
already used, in one form or another, in almost all 
connectionist learning systems. For example, all constructive 
learning algorithms [5, 9, 10] use non-local means to “decide” 
when to expand the size of the network. And the back-
propagation algorithm itself [14, 15] depends on a non-local, 
external source to provide it with the design of a network in 
which to learn. So connectionist systems inadvertently 
acknowledge this “control theoretic” idea, by using a “master 
or controlling subsystem” that designs networks and sets 
learning parameters for them. In other words, as baffling as 
it may sound, the control theoretic ideas have been in use 
all along; they are nothing new. Only recently has such non-
local means of learning been used effectively to develop robust 
and powerful learning algorithms that can design and train 
networks in polynomial time complexity [1, 4, 11, 12]. 
Polynomial time complexity, by the way, is an essential 
computational property for brain-like autonomous learning 
systems. 
 
In addition, a control theoretic framework resolves many of the 
problems and dilemmas of connectionism. Under such a 
framework, learning no longer needs to be instantaneous, but 
can wait until some information is collected about the problem. 
Learning can always be invoked by a controlling subsystem at 
a later point in time. This would also facilitate understanding 
the complexity of the problem from the information that has 
been collected and stored already. Such a framework would 
also resolve the network design dilemma and the problems of 
algorithmic efficiency that have plagued this field for so long 
[1, 4, 11, 12]. So one can argue very strongly for such a theory 
of the brain both from a computational point of view and from 
the point of view of being consistent with externally observed 
human learning behavior. 
 

5.   ACKNOWLEDGMENTS 
This research was supported, in part, by grants from the 
College of Business, Arizona State University. 
 
 



SIGKDD Explorations. Copyright  2000 ACM SIGKDD, January 2000. Volume 1, Issue 2   –   page 38 
 

6.   REFERENCES 
 
[1]     Bennett, K.P. and Mangasarian, O.L.  Neural Network 
Training via Linear Programming.  In P.M. Pardalos (ed),            
Advances in Optimization and Parallel Computing, North 
Holland, Amsterdam, 1992. 
[2]  Churchland, P. On the Nature of Theories: A 
Neurocomputational Perspective. Reprinted as chapter 10 in           
Haugeland, J. (ed), Mind Design II, 1997, MIT Press, 251-292. 
[3]     Churchland, P. and Sejnowski, T. The Computational 
Brain. MIT Press, Cambridge, MA, 1992. 
[4]     Glover, F. Improved Linear Programming Models for 
Discriminant Analysis. Decision Sciences, 21 (1990), 4,          
771-785. 
[5]    Grossberg, S. Nonlinear neural networks: principles, 
mechanisms, and architectures. Neural Networks, 1 (1988),          
17-61. 
[6]  Hebb, D. O. The Organization of Behavior, a 
Neuropsychological Theory. New York: John Wiley, 1949. 
[7]   Levine, D. S. Introduction to Neural and Cognitive 
Modeling, Hillsdale, NJ: Lawrence Erlbaum, 1998. 
[8]      Minsky, M. and Papert, S. Perceptrons.  The MIT Press, 
Cambridge, MA, 1988. 
[9]     Moody, J. & Darken, C. Fast Learning in Networks of 
Locally-Tuned Processing Units, Neural Computation. 1 
(1989), 2, 281-294. 
[10]   Reilly, D.L., Cooper, L.N. and Elbaum, C. A Neural 
Model for Category Learning.  Biological Cybernetics,           
45 (1982), 35-41.   
[11]   Roy, A., Govil, S. & Miranda, R. An Algorithm to 
Generate Radial Basis Function (RBF)-like Nets for           
Classification Problems. Neural Networks, 8 (1995), 2, 179-
202. 
[12]   Roy, A., Govil, S. & Miranda, R. A Neural Network 
Learning Theory and a Polynomial Time RBF Algorithm.           
IEEE Transactions on Neural Networks, 8 (1997), 6, 1301-
1313. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[13]   Roy, A. Summary of panel discussion at ICNN’97 on 
connectionist learning. "Connectionist Learning: Is it Time           
to Reconsider the Foundations." INNS/ENNS/JNNS 
Newsletter, appearing with Neural Networks, 11 (1998), 2. 
[14]  Rumelhart, D.E., and McClelland, J.L.(eds.) Parallel 
Distributed Processing: Explorations in Microstructure of           
Cognition, Vol. 1:  Foundations.  MIT Press, Cambridge, MA., 
1986, 318-362. 
[15] Rumelhart, D.E. The Architecture of Mind: A 
Connectionist Approach. Chapter 8 in Haugeland, J. (ed), 
Mind Design II, 1997, MIT Press, 205-232. 
 
_____________________________________ 

About the author 
 
Asim Roy is a Professor of Computer Information Systems at  
Arizona State University. He received his B.E. in Mechanical 
Engineering from Calcutta University, India, M.S. in 
Operations Research from Case Western Reserve University, 
Cleveland, Ohio, and Ph.D. in Operations Research from 
University of Texas at Austin. He was a Visiting Scholar with 
the neural network group at Stanford University. He has been 
an Associate Editor of IEEE Transactions on Neural Networks 
and is on the Review Board of Applied Intelligence. His 
research interests include neural networks, theory of brain-like 
systems, pattern recognition, prediction and forecasting, 
computational learning theory and nonlinear multiple objective 
optimization. His research has been published in Management 
Science, Decision Sciences, Mathematical Programming, 
Financial Management, Neural Networks, Neural 
Computation, Naval Research Logistics, The ORSA Journal on 
Computing, IEEE Transactions on Neural Networks, IEEE 
Transactions on Fuzzy Systems and others. He has recently 
published a new theory for brain-like learning and computing. 
This new theory challenges the classical learning ideas that 
have dominated the field of brain-like computing for the last 
fifty years.  


