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ABSTRACT
Lately, there has been considerable interest in applying Data

Mining techniques to scienti�c and data analysis problems
in bioinformatics. Data mining research is being fueled by
novel application areas that are helping the development of
newer applied algorithms in the �eld of bioinformatics, an
emerging discipline representing the integration of biological
and information sciences. This is a shift in paradigm from

the earlier and the continuing data mining e�orts in mar-
keting research and support for business intelligence. The
problem described in this paper is along a new dimension in
DNA sequence analysis research and supplements the previ-
ously studied stochastic models for evolution and variabil-

ity. The discovery of novel patterns from genetic databases
as described is quite signi�cant because biological pattern
play an important role in a large variety of cellular pro-
cesses and constitute the basis for gene therapy. Biological
databases containing the genetic codes from a wide vari-
ety of organisms, including humans, have continued their

exponential growth over the last decade. At the time of
this writing, the GenBank database contains over 300 mil-
lion sequences and over 2.5 billion characters of sequenced
nucleotides. The focus of this paper is on developing a gen-
eral data mining algorithm for discovering regions of locus
control, i.e. those regions that are instrumental for activat-

ing genes. One type of such elements of locus control are
the MARs or the Matrix Association Regions. Our limited
knowledge about MARs has hampered their detection us-
ing classical pattern recognition techniques. Consequently,
their detection is formulated by utilizing a statistical inter-
estingness measure derived from a set of empirical features

that are known to be associated with MARs. This paper
presents a systematic approach for �nding associations be-
tween such empirical features in genomic sequences, and for
utilizing this knowledge in detecting biologically interesting
control signals, such as MARs. This computational MAR

discovery tool is implemented as a web-based software called
MAR-Wiz and is available for public access. As our knowl-
edge about the living system continues to evolve, and as the
biological databases continue to grow, a pattern learning
methodology similar to that described in this paper will be
signi�cant for the detection of regulatory signals embedded

in genomic sequences.
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1. BACKGROUND
Data mining is a multidisciplinary �eld spanning several
disciplines including statistics, computer science, pattern
recognition, arti�cial intelligence, machine learning, and oth-
ers. This enables the data mining research to draw from a
plethora of existing research in a manner that represents

an integration of multiple perspectives. Rapid advances in
statistical tools have made many aspects of data analysis
routine { as a result our focus is shifting towards higher
level issues such as the type of questions we should focus on
answering, the type of analysis that would be most suited to
the task at hand, and how the knowledge discovered would

be assimilated to possibly revise any of our existing beliefs.
Our focus is also shifting towards incorporating the analyst's
knowledge and strategies within the data mining tools. This
in a way is providing the requisite knowledge to the system
so that an appropriate criteria for measuring interestingness

is possible to establish. The problem described in the paper
is a problem where a rich set of domain knowledge must be
integrated into the knowledge discovery algorithm. Specif-
ically, we are interested in discovering Matrix Attachment
Regions or MARs from the raw DNA sequence data avail-
able in genomic databases.

The genetic program that forms the basis of life is stored
inside the nucleus in eukaryotes (multi-cellular organisms,
such as humans, primates, etc.) as a linear macromolecule

comprised of nitrogenous bases. This large macromolecule
is also known as DNA or deoxy-ribonucleic acid. A DNA
molecule is comprised of four bases, namely, Adenosine (A),
Cytosine (C), Thymidine (T) and Guanine (G). The DNA
bases occur in pairs, with the base A always pairing with
T, and the base C pairing with G. Accordingly, the length

of a DNA macromolecule, collectively referred to as the
genome, is measured as base-pairs or bp. An extensive multi-
disciplinary endeavor to identify each base in the 3� 109 bp
long human genome has been ongoing for over a decade. The
genome stores the blueprints for the synthesis of a variety
of proteins { the macromolecules that enable an organism

to be structurally and functionally viable. The blueprint or
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the program for the synthesis of a single protein is called a

gene, a unit of the DNA sequence that is generally between
1 � 103{1 � 106 bp in length based upon the complexity of
the protein that it codes for. The process of synthesizing
a protein using its genetically coded blueprint is known as
gene expression. A higher level eukaryote may contain as
many as 30,000-40,000 genes1. It has also been estimated

that only about 1000-10,000 genes may be expressed by a
given cell. Although each cell in an organism contains the
same genetic program, the subset of genes expressed in one
cell type is di�erent from another and is determined by the
functional role of that cell. Apart from the gene coding re-
gions that account for 10-20% of the genome, the majority

of nuclear DNA is non-coding. However, it appears to be
important as researchers believe that the genetic program
is able to regulate the expression of genes based upon the
biologically signi�cant DNA sequence patterns that are pri-
marily observed in the non-coding regions within the neigh-
borhood of a gene [13].

The success of the Human Genome Project (HGP) is de-
pendent upon a continued e�ort to develop databases and
tools for easy access and comparison of genomic informa-

tion. Several molecular biology databases have been created
that contain diverse information on biological data such as
the annotated DNA and protein sequences, 3D-structures,
genetic and physical maps [11]. As the �rst phase of the Hu-
man Genome Project aimed at determining the identity of
the 3�109 characters of the human genome is nearing com-

pletion by year 2003 A.D., the bioinformatics focus is shift-
ing toward developing computational tools and algorithms
that can assist in the analysis, interpretation and discovery
of knowledge contained within this data. At the time of
this writing, the main genomic database, GenBank, contains
about 2.5 billion characters in DNA sequence data (exclud-

ing the annotations), in approximately 300 million DNA se-
quence records. The next phase is expected to focus on com-
pleting the transcript map and understanding the functional
signi�cance of the genes sequenced during Phase I. During
this phase the elements of locus control, such as the MARs

or the Matrix Association Regions, will be sought and their
localization in genetic sequences will be established in order
to facilitate the understanding of genetic processes. This
paper describes a data-mining approach based on the in-
formation theoretical measure of interestingness to discover
regions of matrix association from the DNA sequences in

genomic databases.

The DNA is not merely a homogeneous string of characters
fA,C,T,Gg, but is really comprised of a mosaic of sequence

level motifs that come together in a synergistic manner to
de�ne the state of that organism. Special sequences of reg-
ulatory importance such as introns, promoters, enhancers,
and repeats are found on the DNA, and often contain pat-
terns that represent functional control points within the
genome [10]. Some repetitive DNA patterns serve as a bio-

logical clock and bring about the apoptosis or programmed
cell death. Other examples of these patterns include the
A+ T or G + C rich regions, telomeric repeats of sequence
AGGGTT in human DNA, rare occurrence or absence of
dinucleotides TA and GC, and tetranucleotide CTAG, and
the GNN periodicity in the gene coding regions. There is ev-

1Human genome is estimated to contain about 80,000-
100,000 genes

idence that suggests that some deviations from patterns are

deleterious to the viability of the organism. These and nu-
merous other examples indicate that the patterns embedded
in the eukaryote DNA may play a vital role in its viability.

2. BIOLOGICAL FEATURES
The Matrix Attachment Regions are relatively short (100-
1000 bp long) sequences of functional importance and anchor
the chromatin loops to the nuclear matrix. MARs have been
shown to be responsible for gene expression and serve as the
origins of replication (ORI) for cell division [2]. MARs have

been observed to 
ank the ends of genic domains encompass-
ing various transcriptional units. It has also been shown that
MARs bring together the transcriptionally active regions of
chromatin such that transcription is initiated in the region
of the chromosome that coincides with the surface of nuclear

matrix. Approximately 100,000 matrix attachment sites are
believed to exist in the human nucleus, a number that is
approximately equal to the expected number of genes [1].

The classical pattern recognition approach for detection uti-

lizes the characteristic properties or features of the object
being sought for detection. For example, characters are of-
ten recognized using their area and perimeter, by their com-
pactness (i.e. the ratio of their area to the square of their
perimeter), or by the degrees of symmetry about the hori-

zontal and vertical axes. Clearly, the features needed depend
on the speci�c problem domain and the design of an appro-
priate set of features is more of an art and is crucial to the
overall success of the classi�cation problem. Often we can
think of an unknown observation as being a point in a k-

dimensional feature space, and develop a feature extractor

for the observation X. In an ideal case, the feature extrac-
tor would generate the same feature vector X for all obser-
vations in the same class, and distinct feature vectors for
observations in di�erent classes. In classical pattern recog-
nition the goal is to design the classi�er, given that feature
set extracted from the various classes. However, in data

mining, our goal to classify the observations in such a man-
ner that the features extracted from observations that are
co-classi�ed have similar feature vectors. As described be-
low, the feature vectors utilized for MARs are based upon a
vast body of biological research.

MARs have been experimentally de�ned for several gene
loci. However, researchers have not identi�ed a single DNA
level pattern that characterizes a MAR. The investigation
of MARs in the human interferon-� gene, human �-globin
gene[9], human p53, the human protamine gene cluster, and
the chicken �-globin and lysozyme genes, have helped in
characterizing a set of patterns that are found in the vicin-
ity of MARs, although a consensus sequence has not been
apparent.

The following set of patterns have been known to be associ-
ated with the presence of Matrix Association Regions:

� The Origin of Replication (ORI) Rule: It has been
established that replication is associated with the nu-
clear matrix, and the origins of replication share the
ATTA, ATTTA and ATTTTA motifs.

� Curved DNA: Curved DNA has been identi�ed at or
near several matrix attachment sites and has been in-
volved with DNA-protein interaction, such as recom-

bination, replication and transcription [2; 23]. Opti-
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mal curvature is expected for sequences with repeats of

the motif, AAAAn7AAAn7AAAA as well as the mo-
tif TTTAAA. The term n7 denotes the occurrence of
seven nucleotides of unspeci�ed identity.

� Kinked DNA: Kinked DNA is typi�ed by the presence
of copies of the dinucleotide TG, CA or TA that are
separated by 2{4 or 9{12 nucleotides. For example,
kinked DNA is recognized by the motif TAn3TGn3CA,
with TA, TG and CA occurring in any order.

� Topoisomerase II sites: It has been shown that Topoi-
somerase II binding and cleavage sites are also present
near the sites of nuclear attachment. Vertebrate and
Drosophila topoisomerase II consensus sequence motifs
can be used to identify regions of matrix attachment.

� AT-Rich Sequences: Typically many MARs contain
stretches of regularly spaced AT-rich sequences in a
periodic manner.

� TG-Rich Sequences: Some T-G rich spans are indica-
tive of MARs. These regions are abundant in the
3'UTR of a number of genes, and may act as recombi-

nation signals [2].

� Consensus Motif: The sequence de�ned as the nuclear
matrix STAB-1 binding motif:
TCTTTAATTTCTAATATATTTAGAA, and

� ATC Sequences: ATC rule (a stretch of 20 or more
occurrences of H, i.e. A or T or C). This rule is an
e�ective indicator of regions with marked helix desta-

bilization potential often associated with MARs.

The process of discovering MARs in genomic database is de-
scribed below. In the �rst step, each DNA pattern known
to be associated with the MARs is represented using logi-
cal disjunction of individual pattern conjunction. With each
such AND-OR rule, a statistical relevance score is next asso-

ciated based upon the probability that the pattern might
be observed at random. The individual pattern scores are
added to generate the overall relevance of a region and used
to assess its possibility for being a MAR site.

3. PATTERN DEFINITION AND
RELEVANCE SCORES

In such a general framework, a pattern description language
is de�ned that has suÆcient power to represent the va-

riety of patterns that characterize the MARs. It is pos-
sible to employ a general set of DNA patterns using the
AND-OR methodology. In such an AND-OR pattern speci�-
cation methodology a disjunction (OR) of the conjunctions
(AND) of the motifs detected in the sequence is used as the

de�nition of the pattern being sought. The sequence level
motifs serve as the lowest level predicates used to detect the
presence of a higher level pattern. In general the following
operations may be applied to the lower level motifs:

� Pattern motif sequence, m, represented as a regular
expression, or

� The logical OR of two motifs mi and mj , represented

as mi _mj , or

Motif Index Motif Name Sequence Predicate

m1 ORI Signal ATTA
m2 ORI Signal ATTTA
m3 ORI Signal ATTTTA

m4 TG-Rich Signal TGTTTTG
m5 TG-Rich Signal TGTTTTTTG
m6 TG-Rich Signal TTTTGGGG

m7 Curved DNA Signal AAAAn7AAAAn7AAAA
m8 Curved DNA Signal TTTTn7TTTTn7TTTT
m9 Curved DNA Signal TTTAAA

m10 Kinked DNA Signal TAn3TGn3CA
m11 Kinked DNA Signal TAn3CAn3TG
m12 Kinked DNA Signal TGn3TAn3CA
m13 Kinked DNA Signal TGn3CAn3TA
m14 Kinked DNA Signal CAn3TAn3TG
m15 Kinked DNA Signal CAn3TGn3TA

m16 mtopo-II Signal RnY nnCnnGY nGKTnY nY
m17 dtopo-II Signal GTnWAYATTnATnnR

m18 AT-Rich Signal WWWWWW

m19 Consensus Motif TCTTTAATTT�

CTAATATATTTAGAA

m20 ATC Rule H20

Figure 1: Table of sequence level motifs: The set of mo-

tifs characterizing MARs constitute DNA-sequence signals
or predicates upon which the rules de�ning higher level pat-
terns are constructed. Note that the IUPAC characters R,Y,
W and K are de�ned as: R=A or G, Y=T or C, W = A or

T, and K=G or T.

� The augmented logical AND of two motifs mi and mj ,
represented as a mi ^

b
a mj

2, or

� The logical negation of a motif, m, represented as m,
specifying the absence of a given motif.

The pattern speci�cation methodology must account for the
motif variability in its representation. As an example, con-
sider the rule to de�ne the Origin of DNA Replication. This
can be based on an OR or the _ operator applied to the three
motifs m1 =ATTA, m2 =ATTTA, and m3 =ATTTTA.

R1 = m1 _m2 _m3 (1)

Similarly, the requirement for multiple motif occurrences can
be speci�ed using the AND or the ^ operator. An additional

parameter is incorporated when using the AND rule to con-
strain the allowable gap between the two co-occurring mo-
tifs. For example, the AT-Richness rule, R6, can be for-
mulated as the occurrence of two hexanucleotide strings,
m18=WWWWWW3, that are separated by distance of 8{12 nt,
using the augmented AND operator using

Vhigh

low
to de�ne the

acceptable distance between the two motifs:

R6 = m18

12̂

8

m18 (2)

2In this augmented AND operator, the parameters a and b
specify the acceptable separation between the co-occurrence
of the two motifs
3Note: The IUPAC code W denotes the base A or T
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The relevance score of a pattern is de�ned as log2(pi),
where pi is the probability that the pattern de�ned by the
AND-OR rule Ri will occur at random. The base composi-
tion of the sequences being analyzed is considered for this
purpose [21]. For an OR type of pattern, the composite prob-
ability of the pattern is derived by addition of the probabil-
ities of the underlying patterns. This is possible since the

occurrences of the underlying patterns are mutually exclu-
sive by de�nition for a given start position on the DNA
sequence. For an AND type of pattern, this value is derived
using that the occurrence of at least one motif within an
acceptable distance from the reference motif will satisfy the
pattern occurrence constraint. In general for a pattern rule

of the type, mx

Vv

u my, this probability will be equal to

P (mx) � (1:0�e
�(v�u+1)P (my )). This is derived by assuming

the occurrence of my as a Poisson's process, and deriving
the probability of least one occurrence of my by subtracting
from 1.0 the probability that no occurrences of my will be

observed in the interval (v � u + 1 ).

The signi�cance of the occurrence of a pattern in a DNA
sequence is inversely related to the probability that the pat-
tern will occur purely by chance. This is captured by the

unexpectedness term [22] that is based on Shannon's infor-
mation theory. The unexpectedness for a rule Ri is equal to
log2(Pr(Ri)). In a certain sense, this information content
for a pattern de�ned by a rule is equal to the amount of
uncertainty that the occurrence of that rule removes about

the identify of a speci�c region as being MAR. (In general,
the regions are considered to be random samples from the
DNA). Naturally, the patterns that occur less frequently at
random have a larger contribution in removing this uncer-
tainty. The unexpectedness values for the various rules are
de�ned in Table 2.

Rule Name De�nition Unexpectedness

R1 ORI Rule m1 _m2 _m3 p1 =
P3

i=1 Pr(mi)

R2 TG-Richness Rule m4 _m5 _m6 p2 =
P6

i=4
Pr(mi)

R3 Curved DNA Rule m7 _m8 _m9 p3 =
P9

i=7
Pr(mi)

R4 Kinked DNA Rule m10 _m11 _m12 _ p4 =
P15

i=10
Pr(mi)

m13 _m14 _m15

R5 Topoisomerase Rule m16 _m17 p5 =
P17

i=16
Pr(mi)

R6 AT-Richness Rule m18 ^
12
8 m18 p6 = Pr(m18)�

(1� exp(�5 � Pr(m18)))

R7 Consensus Rule m19 � log2(Pr(m19))

R8 ATC Rule m20 � log2(Pr(m20))

Figure 2: The set of biological rules de�ning patterns that
were used for detecting structural MARs. The table also
speci�es the unexpectedness associated with each MAR rule
de�ned using the combination of lower level patterns. The
unexpectedness values form the basis for mining MARs from
DNA sequences.

4. DATA MINING THE MATRIX
ATTACHMENT REGIONS

Data mining e�orts aim at detecting statistically signi�cant
patterns, that are useful to the user as they are not redun-
dant, novel in regards to user's previous knowledge, simple
for the user to understand, and suÆciently general to the
referred population [5; 15; 3; 14; 19; 18; 4; 6]. When search-

ing for patterns, one must strive for a balance between the

speci�city and their generality. Correspondingly, a distinc-

tion is often drawn between the tasks of �nding patterns and
that of �nding models. Generally, a model is a global repre-
sentation that summarizes the phenomenon underlying the
data and aims at describing how the data may have arisen.
The methods aimed at building global models fall within the
category of statistical exploratory analysis [8].

In contrast, patterns are local representations that charac-
terize a smaller number of cases using a subset of variables
that might be utilized for global models. As an example,

local patterns are often sought in the time-series data anal-
ysis [12], as in the case of analysis of daily stock prices with
the objective of detecting unusual market behaviour. These
methods seek patterns by sifting through the data, measur-
ing co-occurrences of speci�c values of speci�c variables, and
seek nuggets of information amongst the mass of otherwise

voluminous data. The problem of detecting MARs from
anonymous DNA sequence data falls within this category,
and relies on statistically measuring the interestingness of a
region from the standpoint of characterizing it as a MAR.

The discovery of MARs is based on the observation that a
group of patterns are bonded together by the virtue of their
similar function. After such a grouping, a search for the
patterns in a given group can be performed to identify these
regions in the query DNA sequence. If a large subset of

members of a functionally related group of patterns is found
in a given region of the DNA sequence, one can justi�ably
classify it as a MAR. The detection problem is to identify
these regions by estimating the statistical signi�cance of the
observation within a given region. The discovery of these
regions of high pattern density is achieved by sliding a win-

dow along the DNA sequences and measuring the statistical
unexpectedness values for the patterns observed within it. In
the context of our problem domain of detecting MARs, this
unexpectedness value is referred to as theMAR-Potential or
�. The pattern-density is measured within a window of size
W centered at location x along the sequence. The value of

�, although a function of x, is mathematically independent
of the window size, W . Successive window measurements
are carried out by sliding this window in the increments of Æ
nucleotides. If Æ is small, linear interpolation can be used to
join the individual window estimates that are gathered at x,
x+Æ, : : : x+kÆ. In this manner, a continuous distribution of

the pattern-density is obtained as a function of x [20].

The value for the pattern density is evaluated using proba-
bilistic methods. The density of patterns observed in each

window is de�ned as the inverse of the probability of ob-
serving the patterns in a random window of W nucleotides.
The inverse function chosen as, � = � log(�), where the pa-
rameter � is the probability of observing frequencies equal
or higher than those observed in the window. From a stand-
point of hypothesis testing, this would correspond to erro-

neously rejecting null hypothesis that states that the pat-
terns observed in the region of investigation are no di�erent
from those expected from a random sample of the DNA se-
quence. The value of � is computed for both the forward and
the reverse strands of the double helix and the average value

taken to be the true density estimate for a given location.

The computation of � proceeds as follows. Assume that
we are searching for k distinct types of patterns within
a given window of the sequence. In general, these pat-

terns are de�ned as rules R1; R2; : : : ; Rk. The probability
of random occurrence of the various k patterns is calcu-
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lated using the AND-OR relationships between the individual

motifs. Assume that these probabilities for k patterns are
p1; p2; : : : ; pk. Next, a random vector of pattern frequencies,
F, is constructed. F is a k-dimensional vector with compo-
nents, F = fx1; x2; : : : ; xkg, where each component xi is a
random variable representing the frequency of the pattern
Ri in the W base-pair window. The component random

variables xi are assumed to be independently distributed
Poisson processes, each with the parameter �i = pi � W .
Thus, the joint probability of observing a frequency vector
Fobs = ff1; f2; : : : ; fkg purely by chance is given by:

P (Fobs) =

kY

i=1

e��i�fi

fi!
where �i = pi �W (3)

The steps required for computation of �, the cumulative

probability that pattern frequencies equal to or greater than
the vector Fobs occurs purely by chance is given by Eq. 4
below. This corresponds to the one-sided integral of the
multi-variate Poisson distribution.

� = Pr(x1 � f1; x2 � f2; : : : ; xk � fk)

= Pr(x1 � f1) � Pr(x2 � f2) � : : : � Pr(xk � fk)

=

1X

x1=f1

exp��1 �x11
x1!

�

1X

x2=f2

exp��2 �x22
x2!

�

: : : �

1X

xk=fk

exp��k �
xk
k

xk!
(4)

The p-value, �, in Eq. 4 is utilized to compute the value of
� or the pattern-density as speci�ed in Eq. 5 below. The

pattern density is the unexpectedness (� log2 �) associated
with the tail probability �. The in�nite summation term in
Eq. 5 constitutes a convergent series that may be calculated
to the precision desired.

� = � log2(�)

=

kX

i=1

log2 e � �i +

kX

i=1

log2 fi!�

kX

i=1

fi log2 �i

�

kX

i=1

log2(1 +
�i

fi + 1
: : :

�ti
(fi + 1) : : : (fi + t)

) (5)

It may be interesting to point out that the dominant terms in
the formulation of � above represents the cumulative unex-
pectedness observed within a window. If the unexpectedness
for rule Ri de�ned in Table 2 was denoted as �i, the value of
� is proportional to the sum of the total pattern unexpected-
nesss. The total pattern unexpectedness is equal to a sum

of unexpectedness associated with every pattern observed
within the given region of the DNA sequence. The value of
� is therefore approximately equal to this sum as shown in
Eq. 6. The constant � is dependent upon the window size
being used for measuring �.

� � � �

kX

i=1

�i � fi (6)

E�ective analysis of large data sets requires an integrated

support for results visualization within the knowledge dis-
covery environment. For example, competent interactive
tools for exploring complex real-world data as well as visu-
alization strategies and summarizing capabilities are needed
to supplement the intelligent search methods such as the one
described above. The integration of interpretive and anal-

ysis techniques is needed to help the scienti�c users focus
more on the interesting aspects of their tasks, instead of the
routine and the mundane components. Such a design phi-
losophy is adopted by the MAR-Wiz tool where an applet
provides the visualization abilities for this web-based discov-
ery system. Summarizing statistics are also provided where

the users can drill down into the exact matches of a puta-
tive region of Matrix Attachment. Statistical signi�cance as
well as normalized scoring are both optionally provided for
scoring MARs. The MAR-Wiz discovery tool is available at
the following URL:
http://www.futuresoft.org/MAR-Wiz

Fig. 3 presents the output generated from the analysis of
the human �-globin gene sequence produced by this MAR
discovery tool called the MAR-Wiz. The pattern-density

values have been normalized to fall within the range of [0
: : : 1]. As indicated in Table 5, the regions of high MAR po-
tential values, �, have corresponded well to the regions that
have been experimentally established by wet-bench analysis
to be MARs [16; 17].

However, there are cases where improvement is required. For
example, consider the hprt gene, that when impaired results
in Lesch-Nyhan syndrome, a devastating self-mutilating dis-
ease. In this case a MAR has been biologically de�ned to be

contained within the �rst intron (positions 5534{6107) and
has shown great promise when incorporated as an integral
component of gene therapy. However, as shown below in
Fig. 4, when the hprt sequence was tested with MAR-Wiz,
this MAR region was not identi�ed. This may re
ect the fact
that this MAR functions as an ARS (Autonomously Repli-

cating Sequence) which is yet another type of MAR. The
other candidate MAR sequences that have been identi�ed
by MAR-Wiz are coincident with known human mutations
causing this disease. This is signi�cant as MARs have been
found to be associated with hot spots recombination events
that lead to gene mutation.

5. CONCLUSIONS AND FUTURE
RESEARCH

It is estimated that mammalian somatic nucleus contains
approximately 100,000 MARs of which 30,000{40,000 serve
as origins of replication [1]. This begs the question: what

is the function of the remaining MARs? One can begin
to answer this question by observing that MARs most of-
ten 
ank the ends of gene units. It is reasonable to propose
that the remaining 30,000{35,000 pairs of MARs in each cell,
anchor the paired ends of the approximately 12,000{30,000
gene domains to the nuclear matrix. It is likely that it is

not a simple coincidence that this is the number of genes
expressed in each cell. If MARs act, or participate as re-
gions of locus control, then it is likely that their reiteration
throughout the genome provides a means to speci�cally tag
genes. If veri�ed this will help move gene therapy from the
bench to the bedside by ensuring that the implanted gene

adopts the open chromatin conformation when integrated
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into the genome. This paper demonstrates that the task

of detecting the MARs is e�ectively possible through data
mining techniques. The paper also illustrates the synergies
between the use of genomic pattern databases, the develop-
ment computational model for representing these patterns
and the application of data mining algorithms as the ba-
sis for observing and understanding higher level biological

knowledge.

Our future goals are to extend this work to discovery of
MARs in a species speci�c manner by utilizing the di�erent

features that are characteristic of each species. More re-
search is also ongoing to establish the validity of the feature
independence assumption as well as discovering any causal
relationships amongst the constituent features. Contingency
tables [7], a basic form for discovering 2-D regularities, will
be utilized for discovering pattern interdependence.
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Figure 3: The analysis of human beta-globin gene cluster using the MAR-Wiz tool. Default analysis parameters were used
for this case.

Figure 4: The analysis of the Lesch-Nyhan syndrome HPRT gene shows that additional research is required to iden-
tify MARs such as those embedded in introns (positions 5534{6107). Interestingly, most peaks are coincident with
known mutations in this human gene. To date there are 104 mutations reported for this gene, described in detail at:

http://www.uwcm.ac.uk/uwcm/mg/search/119317.html

Predicted MARs Experimental MARs
Sequence Length No. Position No. Position

Human �-globin 75,995 { { 1 �1.5 kb
2 �15{18 kb 1 �15{18 kb
1 50,550 1 �46{54 kb
4 �56{69 kb 2{4 �58{70 kb

Human Protamine 40,573 1 8,700 1 �9.3 kb
PRM1!PRM2!TNP2 1 34,350 1 �33 kb

1 38,150 1 �38 kb

Human Apolipoprotein B 7,274 1 225 1 �200 bp

Human Interferon 9,937 2 �3-4 kb 2 �3-4 kb
1 � 8 kb 1 � 8 kb

Figure 5: Predicted and Experimental MARs: Comparison of the MAR locations predicted and those determined experimen-
tally.
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