Scalability for Clustering Algorithms Revisited

Fredrik Farnstrom
Computer Science
and Engineering
Lund Institute of Technology
Sweden

fredrikf@mail.com

ABSTRACT

This paper presents a simple new algorithm that performs
k-means clustering in one scan of a dataset, while using a
buffer for points from the dataset of fixed size. Experiments
show that the new method is several times faster than stan-
dard k-means, and that it produces clusterings of equal or al-
most equal quality. The new method is a simplification of an
algorithm due to Bradley, Fayyad and Reina that uses sev-
eral data compression techniques in an attempt to improve
speed and clustering quality. Unfortunately, the overhead of
these techniques makes the original algorithm several times
slower than standard k-means on materialized datasets, even
though standard k-means scans a dataset multiple times.
Also, lesion studies show that the compression techniques
do not improve clustering quality. All results hold for 400
megabyte synthetic datasets and for a dataset created from
the real-world data used in the 1998 KDD data mining con-
test. All algorithm implementations and experiments are
designed so that results generalize to datasets of many giga-
bytes and larger.

1. INTRODUCTION

Clustering is the task of grouping together similar items in
a dataset. Similar data items can be seen as being gener-
ated from the same component of a mixture of probability
distributions. The clustering problem is to determine the
parameters of the mixture distribution that generated a set
of observed data items, where for each item its component
is an unobserved feature.

The k-means algorithm is a heuristic solution to the cluster-
ing problem based on the assumption that data points are
drawn from a fixed number k of spherical Gaussian distri-
butions. The algorithm is an iterative process of assigning
cluster memberships and re-estimating cluster parameters.
It terminates when the data points no longer change mem-
bership due to changes in the re-estimated cluster parame-
ters.

Under the assumption that datasets tend to be small, re-
search on clustering algorithms has traditionally focused on
improving the quality of clusterings [4]. However, many
datasets now are large and cannot fit into main memory.
Scanning a dataset stored on disk or tape repeatedly is time-
consuming, but the standard k-means algorithm typically
requires many iterations over a dataset to converge to a so-

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, Jul 2000.

James Lewis
Computer Science
and Engineering
University of California
San Diego

jlewis@cs.ucsd.edu

Charles Elkan
Computer Science
and Engineering
University of California
San Diego

elkan@cs.ucsd.edu

lution, with each element needing to be accessed on each it-
eration. Therefore, considerable recent research has focused
on designing clustering algorithms that use only one pass
over a dataset [9; 6]. These methods all assume that only
a portion of the dataset can reside in memory, and require
only a single pass through the dataset.

The starting point of this paper is a single pass k-means al-
gorithm proposed by Bradley, Fayyad, and Reina [1]. This
method uses several types of compression to limit memory
usage. However, the compression techniques make the al-
gorithm complicated. We investigate the tradeoffs involved
by comparing several variants of the algorithm of Bradley
et al. experimentally with a simple new single pass k-means
method. Our overall conclusion is that the simple method
is superior in speed, and at least equal in the quality of
clusterings produced.

2. SINGLEPASS K-MEANSALGORITHMS

The algorithm of Bradley et al. [1] is intended to increase the
scalability of k-means clustering for large datasets. The cen-
tral idea is to use a buffer where points from the dataset are
saved in compressed form. First, the means of the clusters
are initialized, as with standard k-means. Then, all avail-
able space in the buffer is filled with points from the dataset.
The current model is updated on the buffer contents in the
usual way. The buffer contents are then compressed in two
steps.

The first step, called primary compression, finds and dis-
cards points that are unlikely ever to move to a different
cluster. There are two methods to do this. The first method
measures the Mahalanobis distance from each point to the
cluster mean it is associated with, and discards a point if
it is within a certain radius. For the second method, confi-
dence intervals are computed for each cluster mean. Then,
for each point, a worst case scenario is created by perturbing
the cluster means within the confidence intervals. The clus-
ter mean that is associated with the point is moved away
from the point, and the cluster means of all other clusters
are moved towards the point. If the point is still closest
to the same cluster mean after the perturbations, then it is
deemed unlikely ever to change cluster membership.

Points that are unlikely to change membership are removed
from the buffer, and are placed in a discard set. Each of the
main clusters has a discard set, represented by the sufficient
statistics for all points belonging to that cluster that have
been removed.

On the remaining points in the buffer, another k-means clus-

Volume 2, Issue 1 - page 51

tering is performed, with a larger number of clusters than
for the main clustering. This phase is called secondary com-
pression. The aim is to save buffer space by storing some
auxiliary clusters instead of individual points. In order to re-
place points in the buffer by a secondary cluster, the cluster
must satisfy a tightness criterion, meaning that its standard
deviation in each dimension must be below a certain thresh-
old 8. Secondary clusters are combined using hierarchical
agglomerative clustering [7], as long as the combined clusters
satisty the tightness criterion.

After primary and secondary compression, the space in the
buffer that has become available is filled with new points,
and the whole procedure is repeated. The algorithm ends af-
ter one scan of the dataset, or if the centers of the main clus-
ters do not change significantly as more points are added.

2.1 Implementation issues

‘We have coded a new C++ implementation of the algorithm
of Bradley et al. All the algorithms we compare experimen-
tally are implemented as variants of the same code. The
platform for our experiments is a dual 450 MHz Pentium
IT workstation with 256 megabytes of main memory, run-
ning Linux. Our program is not multithreaded, so only one
of the processors is directly used in the experiments. The
program is compiled with all optimizations turned on. All
datasets are stored on disk as Linux binary files. Regardless
of the size of any dataset, each pass of each algorithm reads
the dataset afresh from disk. Therefore, our experimental
conclusions generalize to very large datasets.

Some details of the implementation of their algorithm are
not given by Bradley et al. For each primary cluster, a Ma-
halanobis radius must be determined that causes a certain
fraction p of buffer points in that cluster to be discarded.
Our implementation computes the distance between each
buffer point and the cluster it is assigned to. For each
cluster,; the list of distances is sorted. Then it is easy to
find a radius such that a certain fraction of points is dis-
carded. However, sorting can change the time complexity
of the whole algorithm. It may be possible to determine
each Mahalanobis radius more efficiently, especially when
the fraction of discarded points is small.

Our implementation stores the sufficient statistics (sum of
elements, squared sum of elements, number of points) as well
as the mean and standard deviation in each dimension of all
main and secondary clusters. Means are stored so that the
distance between old and new means (the new mean is com-
puted from the sum of the elements) can be computed when
doing k-means clustering. Standard deviations are stored
to speed up primary compression. Representing one cluster
uses four times as much space as one data point. There-
fore, if a secondary cluster contains four or fewer points, the
points themselves are retained instead of a representation of
the cluster.

For our purposes, the sufficient statistics of a cluster are
two vectors, Sum and SumdSq, and one integer, n. The
vectors store the sum and the sum of squares of the ele-
ments of the points in the cluster, and the integer records
the number of points in the cluster. From these statis-
tics, the mean and variance along each dimension can be
calculated. Let the sufficient statistics of a cluster A be
(Sum™, SumSq“, n). If a point z is added to the clus-

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, Jul 2000.

ter, the sufficient statistics are updated as follows:
SumﬁA) = Sum;-A) + z;
Suqu](-A) = Suqu](-A) + xf
M =n 41
If clusters A and B are merged, the sufficient statistics for
the resulting cluster C are
Sumﬁ-o) = SumﬁA) + Sum;-B)
Suqu](-O) = SuquJ(-A) + Suqu](-B)
2@ —) 4 B

2.2 Asimple single pass k-means method

A special case of the algorithm of Bradley et al., not men-
tioned in their paper, would be when all points in the buffer
are discarded each time. This algorithm is:

1. Randomly initialize cluster means. Let each cluster
have a discard set in the buffer that keeps track of the
sufficient statistics for all points from previous itera-
tions.

2. Fill the buffer with points.

3. Perform iterations of k-means on the points and dis-
card sets in the buffer, until convergence. For this clus-
tering, each discard set is treated like a regular point
placed at the mean of the discard set, but weighted
with the number of points in the discard set.

4. For each cluster, update the sufficient statistics of the
discard set with the points assigned to the cluster. Re-
move all points from the buffer.

5. If the dataset is exhausted, then finish. Otherwise,
repeat from Step 2.

This algorithm is called the simple single pass k-means method.

Compared to the more complicated algorithm above, it does
much less computation each time the buffer is filled, and the
whole buffer can be filled with new points at every fill. Fol-
lowing Bradley et al. [1], if a cluster ever becomes empty, it
is reinitialized with the point in the buffer that is most dis-
tant from the centers of all other clusters. However, with a
large dataset and a small number of clusters, reinitialization
is almost never necessary.

Like the more complicated algorithm above, the simple method
uses only one scan over the dataset and a fixed size buffer.
It also satisfies all the other desiderata listed by Bradley
et al. [1]: incremental production of better results given ad-
ditional data, ease of stopping and resuming execution, and
ability to use many different database scan modes, includ-
ing forward-only scanning over a database view that is never
materialized completely.

3. LESION EXPERIMENTS

To evaluate the contribution of each of the data compres-
sion methods, we report the results of experimental lesion
studies. Comparisons are made between four variants of
the algorithm of Bradley at al., the standard k-means al-
gorithm, and the simple single pass k-means algorithm de-
scribed above.

Volume 2, Issue 1 - page 52

Parameter Value
Confidence level for cluster means 95%
Max std. dev. for tight clusters (8) | 1.5
Number of secondary clusters 20
Fraction of points discarded (p) 20%

Table 1: Parameter settings used for the lesion studies of
the k-means algorithm of Bradley et al.

Three variants involve adding one of the data compression
methods described above to the previous variant. The first
variant uses none of the data compression techniques. This
variant runs until convergence on the first fill of the buffer,
and then stops. This variant is similar to clustering on a
small random sample of the dataset. In the second vari-
ant, the first primary compression technique is used. This
involves moving to the discard set each point within a cer-
tain Mahalanobis distance from its associated cluster mean.
In the third variant, the second primary compression tech-
nique is added. Confidence intervals are used to discard data
points deemed unlikely ever to change cluster membership.
The fourth variant includes the data compression technique
of determining secondary clusters. All parameter settings
used in the experiments reported here are shown in Table 1.

3.1 Synthetic datasets

The lesion experiments use synthetic datasets. Using artifi-
cial data allows the clusters found by each algorithm to be
compared with known true probability distribution compo-
nents. In each synthetic dataset, points are drawn from a
mixture of a fixed number of Gaussian distributions. Each
Gaussian is assigned a random weight that determines the
probability of generating a data point from that component.
Following Bradley et al. [1], the mean and variance of each
Gaussian are uniformly sampled, for each dimension, from
the intervals [—5, 5] and [0.7, 1.5] respectively.

In order to measure the accuracy of a clustering, the true
cluster means must be compared with the estimated cluster
means. The problem of discovering which true cluster mean
corresponds to which estimated mean must be solved. If the
number of clusters k is small, then it is possible to use the
one of the k! permutations that yields the highest accuracy.
‘We do this, and for this reason the number of clusters kK = 5
is small in our experiments. Results with a much larger
number of clusters might be different.

The synthetic datasets have 100 dimensions and 1,000,000
data points. They are stored on disk in 400 megabyte files.
This size is chosen to guarantee that the operating system
cannot buffer a dataset in main memory. Except for the
standard k-means algorithm, each clustering algorithm uses
a limited buffer large enough to contain approximately 1%
of the data points.

The experiments use 30 different synthetic datasets. For
each dataset each algorithm generates five different cluster-
ings from different initial conditions. The best of these five
models is retained for a comparison of the accuracy of the
algorithms. The best of five runs is used because k-means
algorithms are known to be sensitive to how cluster cen-
ters are initialized. In applications where a good clustering
is wanted, it is therefore natural to use the best of several
runs.

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, Jul 2000.

In general one of two different situations occurs with each
clustering. Either, one cluster mean in the model is close
to each true Gaussian center, or, two cluster means in the
model are trapped near the same center. As we measure the
distance between the true and the estimated cluster means,
if a center is trapped then the distance measure will be much
larger than otherwise. Therefore, the cluster quality in Fig-
ure 1 is based only on datasets for which every algorithm
produced at least one clustering where no center is trapped.

Cluster quality

—H

0.5f

Distance between estimated and true means

oL AL I F I]

R1 S1-- S1- S1 N1 K
Algorithm

Figure 1: The graph shows the mean sum of the distances
between the estimated and true cluster means, for synthetic
datasets of 1,000,000 points, 100 dimensions, and five clus-
ters. The algorithms are random sampling k-means (R1),
single pass k-means with the first primary compression tech-
nique only (S1--), with both primary compression tech-
niques (S1-), with primary and secondary compression (S1),
the simple single pass k-means method (N1), and the stan-
dard k-means algorithm operating on the whole dataset (K).
Error bars show standard errors.

3.2 Lesion experiment results

Figure 1 shows that even the simplest single pass algorithm
achieves the same clustering quality as the full k-means
method. Random sampling k-means is less accurate because
it uses only 1% of the total data points.

A clustering where no centers are trapped is highly desirable.
Therefore, we also measure the fraction of clusterings where
no centers are trapped, counting clusterings from all five
random initial conditions. We call this fraction the reliability
of an algorithm. Surprisingly, Figure 2 shows that the single
pass algorithms are more reliable than the standard k-means
algorithm, and this difference is statistically significant.
Throughout this paper, the difference between z and y is
called statistically significant if v + s, <y — sy or y + sy <
* — Sz, where s, and sy are the standard errors of x and y
respectively. If x is the mean of n observations then its stan-
dard error is the standard deviation of the n observations
divided by y/n. For the special case where z is a propor-
tion, its standard error is v/z(1 — z)/n. If n is sufficiently
large then a Gaussian approximation is valid, so the null
hypothesis that the true values of z and y are the same can
be rejected with confidence p < 0.05, if v 4+ s, <y — sy or
y + sy < & — s;. Numerical p values from specific statisti-

Volume 2, Issue 1 - page 53

Reliability
100

901
801
701
60

501

Reliability [%]

401

——t
——t
——t
——

301

——

——

201

10p

R1 S1-- S1- S1 N1 K
Algorithm

Figure 2: The graph shows the reliability of the different
algorithms on the synthetic datasets. Reliability is defined
as the fraction of all runs where no centers are trapped.
Error bars show standard errors.

cal tests are not reported because their precision could be
misleading, since the assumptions on which standard tests
are based are often not valid when comparing performance
metrics for data mining methods [3].

Figure 2 shows surprisingly that the standard k-means al-
gorithm is not significantly more reliable than random sam-
pling k-means. This fact indicates that the standard algo-
rithm has difficulty escaping from a bad initialization, re-
gardless of how many data points are available. Similarly,
the more complicated single pass methods are not more reli-
able than the simple single pass method. This fact indicates
that the more complicated methods do not have any im-
proved ability to escape from a bad initialization.

The average running time of each algorithm is shown in
Figure 3. Reported times are averages over 135 runs for each
algorithm. The full algorithm of Bradley et al., identified as
S1 in Figure 3, is about four times slower than the standard
k-means algorithm, while the simple single pass method is
about 40% faster.

With the method of Bradley et al., each additional data
compression technique allows more points to be discarded
from the buffer. Doing so should make the algorithm run
faster, because then fewer refills of the buffer are needed.
A balance must be maintained between the time taken to
identify points to discard and the speedup gained from dis-
carding those points. Figure 3 shows that compression based
on confidence interval perturbation causes a net decrease in
speed, while compression based on secondary clustering is
beneficial.

4. EXPERIMENTS WITH REAL DATA

In order to experiment with real-world data, the dataset
from the 1998 KDD (Knowledge Discovery and Data Mining
Conference) contest is used. This dataset contains informa-
tion about people who have made charitable donations in
response to direct mailing requests. In principle, clustering
can be used to identify groups of donors who can be targeted
with specialized solicitations in order to maximize donation

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, Jul 2000.

Running time
350r

w

o

o
T

N

a1

o
T

N

o

o
T

Running time [s]
=
(42
?

o []

R1 S1-- S1- S1 N1 K
Algorithm

Figure 3: The graph shows the average running time of each
k-means algorithm variant. Error bars show standard errors.

profits.

The dataset contains 95412 records, each of which has 481
fields. We take a subset of these fields and code each record
as a real-valued vector. Numerical fields (e.g. amounts of
past donations, income, age) are directly represented by a
single element in the vector. Date values (e.g. donation
dates, date of birth) are stored as the number of months
from a fixed date. Fields with discrete values, such as an
income category, are converted into several binary elements.
Each vector has 56 elements in total, of which 18 are binary.
To give equal weight to each feature, each feature is normal-
ized to have zero mean and unit variance. The records in
the original KDD dataset are converted to this format and
saved to a binary file of about 21.4 megabytes. As men-
tioned in Section 2.1, the implementation of the standard
k-means algorithm reads the dataset from disk at each iter-
ation, even though the dataset is small enough to be saved
in memory.

The purpose of this experiment is to compare the running
time and clustering quality of standard k-means, operating
on the whole dataset or on samples, the algorithm of Bradley
et al. using all types of compression, and the simple single
pass method. Experiments are performed with samples and
buffers of 10% and 1% of the size of the whole dataset. The
number of clusters is always 10.

First, the dataset is randomly reordered. Then it is clus-
tered five times by each algorithm, each time with different
randomly chosen initial conditions. All algorithms use the
same five initial conditions. The quality of each clustering
is measured as the sum of the squared distances between
each point and the cluster mean it is associated with. Of
the five clusterings for each algorithm, the one with the best
quality is used. As above, the best of five is chosen because
k-means algorithms are highly sensitive to initial conditions.
The whole procedure is repeated 52 times with different ran-
dom orderings of the dataset.

It is difficult to discover good parameter values for the al-
gorithm of Bradley et al., especially for the parameters that
control the number of points removed by secondary com-
pression. The values used here are given in Table 2. Note
that it is difficult for a secondary cluster to have standard

Volume 2, Issue 1 - page 54

Parameter Value
Confidence level for cluster means 95%
Max std. dev. for tight clusters () 1.1
Number of secondary clusters 40
Fraction of points discarded (p) 20%

Table 2: Parameter settings used for the algorithm of
Bradley et al. with the KDD dataset.

deviation 8 < 1.1 in every dimension, even though the whole
dataset is normalized to have standard deviation 1.0 in each
dimension.

Figure 4 shows the average quality of the best of five clus-
terings, for each algorithm. Random sampling k-means op-
erating on a 1% sample performs much worse than all other
methods. Standard k-means performs best, followed by the
simple single pass method using a buffer of size 1%, followed
by the algorithm of Bradley et al. All differences mentioned
here are statistically significant.

There is no “true” clustering of the KDD dataset that can
be used to define reliability in a way similar to how relia-
bility is defined for the synthetic datasets. Therefore, the
reliability of an algorithm is defined here to be the fraction
of all clusterings that have a quality measure of less than
3.9.10%. This number is chosen somewhat arbitrarily based
on Figure 4 as a threshold for what constitutes an acceptable
clustering. A reliable algorithm is one that is less sensitive
to how cluster centers are initialized, and that produces a
good clustering more often.

Figure 5 shows that the standard k-means method and the
simple single pass method with a buffer of size 1% are the
most reliable. All other methods are statistically signifi-
cantly less reliable. It is surprising that the simple single
pass algorithm using a buffer of size 1% of the entire dataset
outperforms the same method using a 10% buffer. Similar
results were found by Bradley et al. [1] when they varied
the buffer size used by their algorithm. The reason why a
smaller buffer can be better remains to be discovered.
Figure 6 shows the average running time of each method.
Compared to the standard k-means method, the algorithm
of Bradley et al. is over four times slower, while the simple
single pass method is over five times faster.

5. COMPUTATIONAL COMPLEXITY

In the discussion here of the asymptotic efficiency of the
algorithms, we use the following notation:

number of k-means passes over entire dataset
number of k-means passes over one buffer refill
number of dimensions

number of data points

size of buffer, as fraction of n

number of buffer refills

number of main clusters

» number of secondary clusters

ma number of passes for each secondary clustering.

s =33

Eonlit- i B~

The time complexity of the standard k-means algorithm is
O(nkdm), where empirically m grows very slowly with n, k,
and d.

For the simple single pass k-means algorithm, the time com-
plexity of clustering the buffer contents once is O(nbkdm’).

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, Jul 2000.

6 Cluster distortion

w

©

©
T

w

©

2
T

w
©
B
T
A

w

W 0

© N
T :

w

©

®©
T

HH

HH
HH
i

w
©
<)
T
HH

quared point—cluster distance

Hh

S
w
[e2]
X

T

w

©

N
T

w
©

S10 S1 N10 N1 R10 R1 K
Algorithm

Figure 4: The graph shows the sum of the squared distances
between each point in the dataset and the cluster mean it
is associated with, on the KDD contest dataset of 95412
points with 10 clusters. The algorithms are due to Bradley
et al. (S10 and S1), the simple single pass method (N10 and
N1), random sampling k-means (R10 and R1), and standard
k-means working on the whole dataset. Algorithms with
names ending in 10 use a buffer or sample of size 10% of the
whole dataset, while those with names ending with 1 use a
1% buffer or sample. Error bars show standard errors.

Algorithm Time Space 1/0
Standard nkdm kd ndm
Bradley et al. nbrkaedms | nbd + k3d | nd
Simple single pass | nkdm’ nbd nd

Table 3: Order of magnitude time, memory, and disk in-
put/output complexity for different k-means algorithms.

Because the buffer is emptied completely before each refill,
the number of refills is 1/b, so the time complexity of clus-
tering the whole dataset is O(nbkdm' - 1/b) = O(nkdm’).
Interestingly, m’ tends to be less than m because cluster-
ing is performed over fewer data points than for standard
k-means. In fact, m’' tends towards one for large datasets,
because when the model has stabilized, new points are sim-
ply placed in the nearest cluster. This observation is true
for all the single pass algorithms.

The complicated nature of the method of Bradley et al.
makes it difficult to analyze. The main clustering takes
O(nbkdm') time per fill. Measuring the Mahalanobis dis-
tance to the closest cluster for the points in the buffer is an
O(nbd) operation. Finding the discard radius for all main
clusters takes O(nblog nb) time if sorting is used; the worst
case is when essentially all points belong to one cluster. The
total time complexity of the first method of primary com-
pression is thus O(nb(d+log nb)). The second method of pri-
mary compression, where the cluster means are perturbed,
has time complexity O(nbkd).

In the secondary compression phase, m» passes with k2 clus-
ters are performed over the points in each fill of the buffer,
giving this phase O(nbkzdms) complexity for one fill of the
buffer. Then, hierarchical agglomerative clustering is per-

Volume 2, Issue 1 - page 55

Reliability
1001

90r
801

701

[

60 T

501

-

Reliability [%]

i

401

[.
[

301

201

10p

S10 s1 N10 N1 R10 R1 K
Algorithm

Figure 5: The graph shows the reliability of each different
algorithm on the KDD contest dataset, defined as the frac-
tion of clusterings having a distortion less than 3.9 - 10.
Error bars show standard errors.

formed on the k» clusters. This can be done with O(k3d)
time and space complexity [7].

The steps described above must be repeated r times to scan
through the whole dataset. Typically r > 1/b since the
whole buffer cannot be filled at each fill. So, the algorithm
of Bradley et al. has a total time complexity of

2
0] (nbr(kdm' +d + log nb + kadms + kzgl)) .
i

In general k2 > k and ma > m’, so the total time complexity
is O(nbrkadmsz). An assumption here is that the clustering
is not stopped until the whole dataset has been processed.
This assumption is true in all our experiments.

The time, memory, and disk I/O complexities of the three
algorithms are summarized in Table 3. The simple single
pass algorithm is superior asymptotically in both time and
space complexity to the algorithm of Bradley et al.

6. DISCUSSION

The main positive result of this paper is that a simple single
pass k-means algorithm, with a buffer of size 1% of the input
dataset, can produce clusterings of almost the same quality
as the standard multiple pass k-means method, while being
several times faster.

Being faster than the standard k-means algorithm is not a
trivial accomplishment, because the standard algorithm is
already quite scalable. Its running time is close to linear
in the size of the input dataset, since the number of passes
required is empirically almost independent of the size of the
dataset. In addition, at each pass the dataset is scanned
sequentially, so a good operating system and disk array can
easily provide access to the dataset with high bandwidth.
Although it is called scalable, the algorithm of Bradley et al. is
much slower in our experiments than the standard k-means
method. Bradley et al. did not report this fact because their
paper contains no comparisons with standard k-means, and
no running times. Moreover, the paper gives no measures
of statistical significance for differences in clustering qual-

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, Jul 2000.

Running time
1201
T

1001 T
= 801
[}
£
o 60r
£
c
c
=]
& 0t

201

0 I e T .
S10 S1 N10 N1 R10 R1 K
Algorithm

Figure 6: The graph shows the average time taken by each
method to perform one clustering of the KDD dataset. Error
bars show standard errors.

ity between algorithms, and the largest dataset used in the
paper whose size can be computed from information in the
paper occupies only 10 megabytes when stored as a float-
ing point binary file. The operating system of any modern
workstation can cache a dataset of this size in main memory.
We may not have found optimal settings for the parame-
ters of the algorithm of Bradley et al. However, we have
searched informally for good parameter settings. In general,
algorithms that have many parameters with few guidelines
about how to choose values for them are difficult to use ef-
fectively.

Compared to the standard k-means algorithm, the method
of Bradley et al. is slower on the KDD dataset than on the
synthetic datasets. The opposite is true for the simple sin-
gle pass method: it is relatively faster on the KDD dataset.
The reason is that the KDD dataset has clusters that are
separated less well; and the method of Bradley et al. is sen-
sitive to clusters not being separated well. The standard
algorithm requires 13 passes on average to converge on the
KDD dataset, but only 3.3 passes on the synthetic datasets.
As explained in Section 5, the number m’ of iterations per
refill of the buffer tends to 1 for the simple algorithm for all
datasets. But for the method of Bradley et al., the number
mg of iterations in the secondary clustering for each refill of
the buffer may remain high.

With all k-means algorithms, both single pass and multiple
pass, it is possible to update several clusterings in parallel,
where each clustering starts from different initial conditions.
We did not do so for our experiments. If we did so, the
average running time per clustering of all methods would
presumably decrease. There is no reason to think that the
relative speeds of the methods would change.

If a dataset to be clustered does not already exist as a single
table in a relational database or as a flat file, then materi-
alizing it can be expensive. Materializing a dataset may be
especially expensive if it consists of a join of tables in a dis-
tributed or heterogeneous data warehouse. In this case, all
single pass clustering methods can be faster than the stan-
dard k-means algorithm. However, the ranking of different
single pass methods according to speed is likely to be still

Volume 2, Issue 1 - page 56

the same.

The results of this paper are complementary to those of Pel-
leg and Moore [8], who show how to use a sophisticated
data structure to increase the speed of k-means clustering
for datasets of low dimensionality (d < 8). Our simple single
pass method is effective regardless of dimensionality. The re-
sults here are also complementary to those of Guha, Mishra,
Motwani, and O’Callaghan [5], who present single pass clus-
tering algorithms that are guaranteed to achieve clusterings
with quality within a constant factor of optimal.

‘We have not tested other single pass clustering algorithms,
notably the BIRCH method [9]. The authors of BIRCH have
shown convincingly that it is faster than k-means on large
datasets. A comparison of the simple single pass method of
this paper with BIRCH would be interesting. Also, all the
single pass methods discussed in this paper can be extended
to apply to other iterative clustering approaches, and in par-
ticular to expectation maximization (EM) [2]. It would be
interesting to repeat the experiments of this paper in the
EM context.

Acknowledgments: The authors are grateful to Nina Mishra

and Bin Zhang of Hewlett Packard Laboratories and to the
anonymous referees for valuable comments.

7. REFERENCES

[1] P. Bradley, U. Fayyad, and C. Reina. Scaling cluster-
ing algorithms to large databases. In Proceedings of the
Fourth International Conference on Knowledge Discov-
ery and Data Mining, pages 9-15. AAAI Press, 1998.

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, Jul 2000.

[2] P. Bradley, U. Fayyad, and C. Reina. Scaling EM (ex-
pectation maximization) clustering to large databases.
Technical Report MSR-TR-98-35, Microsoft Research,
Redmond, WA, November 1998.

[3] T. G. Dietterich. Approximate statistical tests for
comparing supervised classification learning algorithms.
Neural Computation, 10(7):1895-1924, 1998.

[4] V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining very
large databases. Computer, 32(8):38-45, 1999.

[5] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. In Proceedings of the Annual
Symposium on Foundations of Computer Science. IEEE,
November 2000. To appear.

[6] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient
clustering algorithm for large databases. In Proceedings
of the ACM SIGMOD International Conference on Man-
agement of Data, pages 73-84. ACM, 1998.

[7] M. Meila and D. Heckerman. An experimental com-
parison of several clustering and initialization methods.
Technical Report MSR-TR-98-06, Microsoft Research,
Redmond, WA, February 1998.

[8] D. Pelleg and A. Moore. Accelerating exact k-means al-
gorithms with geometric reasoning. In Proceedings of the
Fifth International Conference on Knowledge Discovery
and Data Mining. AAAT Press, 1999.

[9] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An
efficient data clustering method for very large databases.
In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 103-114. ACM,
1996.

Volume 2, Issue 1 - page 57

