An efficient and scalable data compression approach to
classification

Claudia Diamantini

Maurizio Panti

Computer Science Institute, University of Ancona Computer Science Institute, University of Ancona

via Brecce Bianche
60131 Ancona, Italy

diamanti@inform.unian.it

ABSTRACT

Learning algorithms are effective means of inducing predic-
tive models of a phenomenon starting from a set of instances
of the phenomenon itself. However, the impressive growth
of the amount of stored data makes scalability of both the
learning and classification procedures a compelling requisite
for their effective application in data mining tasks, at least
as important as accuracy of the induced model. In this
paper we show the features of a stochastic gradient algo-
rithm for the minimization of the average misclassification
risk performed by a Labeled Vector Quantizer, both in terms
of scalability and accuracy. The performance are compared
with those of other related algorithms, often adopted in data
mining, on both artificial and real data experiments.

1. INTRODUCTION

Database Management Systems give simple and fast access
to data, but they provide limited resources to discover high-
level information hidden into the data. For instance, they
can not give answer to queries like: “give me all the transac-
tions whose likelihood of being fraudulent exceeds 0.75” [€],
or “is this client reliable for a loan?”. To answer this kind
of questions, a predictive model of the domain is needed,
that is, a classification rule which allows to classify data
into one of a specified set of classes (for instance, “fraud-

ulent”, “legal”, or “reliable”, “unreliable” in the examples
above), on the basis of the values of a set of relevant data
attributes z = {z1,...,zn}, hereafter called features. The

classification rule should be designed as accurate as possi-
ble, in such a way that the minimum number of classifica-
tion errors is made. This problem has been undertaken for
a long time in disciplines like statistics, pattern recognition
and machine learning, and their achievements form a solid
theoretical background also for the developing of methodolo-
gles and tools that help in the analysis of, and information
extraction from, databases. Non parametric classification
methods has been developed in pattern recognition, such as
the nearest neighbor method [2], whose classification accu-
racy often turns out to compete in data mining applications
with other, more sophisticated, ones [5; 7]. However, this
approach requires to process the entire training set in or-
der to classify a new datum, thus its application to large
databases turns out to be unpractical. The high cost of non
parametric methods was recognized as early as the first stud-

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

via Brecce Bianche
60131 Ancona, Italy

panti@inform.unian.it

ies in pattern recognition, where data reduction techniques
were introduced. The aim of data reduction is to select from
the whole training set the subset of data which allows the
minimum degradation in performance. Hart [9] introduced
an algorithm for the nearest neighbor method, based on the
observation that these data are exactly those falling near the
decision border. This heuristic was in some sense discovered
again, in more recent studies in data mining and machine
learning [1; 14; 15]. These approaches allows to reduce the
cost of classification, but they introduce a cost for running
the reduction algorithm, and an accuracy vs efficiency trade-
off. Furthermore, very often such algorithms turn out to be
themselves too expensive to be applied to large databases,
so an important research topic in data mining is the de-
velopment of techniques in order to improve scalability [16;
13; 11]. In this paper, we want to bring to the attention
of researchers the features of a complementary approach
to data reduction, i.e. data compression. We introduce
a learning algorithm for Vector Quantizer (VQ) architec-
tures [8], based on the principle of average misclassification
risk minimization. Although average misclassification risk
is universally considered as the right measure to evaluate
a classification rule, most of the learning paradigms known
in the literature do not use this learning criterion, adopt-
ing other related measures instead, such as the well known
Mean Square Error used in the back-propagation algorithm
(see e.g. [10]) or Structural Risk [17], or heuristics [1; 9;
12]. The proposed algorithm, first presented in [4], is the
first complete and general gradient-descent solution to aver-
age misclassification risk minimization, based on stochastic
approximation theory. Stochastic gradient algorithms are
efficient methods for learning [10, §4.6], as they perform lo-
cal computations based on only one training sample for each
iteration. Local computations are simple to implement on
parallel architectures, while the use of one sample per itera-
tion allows to keep data on hard disks, with no accuracy vs
efficiency tradeoff typical of data reduction techniques. Av-
erage misclassification risk minimization guarantees optimal
classification performance. These facts ensure the efficiency
and effectiveness of the learning process. Furthermore, VQ
architectures proves particularly well suited to the classifi-
cation task, allowing to strongly compress the information
contained in the training set. The particular VQ architec-
ture adopted, that of nearest neighbor, allows to design a
simple nearest neighbor classification rule based on a very
small number of elements with respect to the training set
size. These characteristics ensure the efficiency of the clas-

Volume 2, Issue 2 - page 49

sification process. In the present paper, the performance of
the method will be demonstrated on both artificial data and
real data taken from the UCI ML repository, and compared
with those of the classical Nearest Neighbor (1-NN) method,
Support Vector Machines (SVM) [17] and the IB2 algorithm
of the Instance Based Learning family [1].

2. THEBAYESVECTOR QUANTIZER

In the statistical approaches to classification, data are de-
scribed by a continuous random vector x € R" (feature
vector) and classes by a discrete random variable ¢ € C =
{c1,¢c2,...,cc}. Foreach class ¢;, the distribution of data in
the feature space is described by the conditional probability
density function (cpdf) pxje(z|ci). The cumulative prob-
ability density function of the random vector x is px(z) =
ZiC:I Pe(ci)pxje(z|c), where Pe(c;) is the a priori probability
of class c¢i. The predictive accuracy of a classification rule
® : R™ — C is evaluated by the average misclassification
risk

R(®) = [R(@()|0)p=(@)dV:, (1

where dV, denotes the differential volume in the z space and
R(c;|z) is the risk in deciding for class ¢; when a particular
z is observed. R(cj|z) is defined as

R(cslz) = D blei,¢p) Pepe(cil). (2)

=1

In (2), b(ci,c;) > 0 expresses the cost of an erroneous clas-
sification, i.e. the cost of deciding in favor of class ¢; when
the true class is ci, with b(ci,ci) = 0 Vi. If b(ci,c;) = 1
Vi, 5,1 # 7 the average misclassification risk turns to the
simpler error probability. Pex(ci|z) can be derived from
Pyle(z]ci) by the Bayes theorem. The development of most
of the learning algorithms and non parametric methods for
classification starts from the result that the best possible
classification of a feature vector consists in mapping it to the
class with the minimum conditional risk (2) (Bayes rule):

@5(z) = min™ {R(clz)}, (3)

trying to overcome the limits of applicability of this opti-
mal rule, related to the the fact that cpdfs involved in are
in general unknown. Thus one of the main efforts is that
of obtaining estimates of such functions of z on the basis
of the training set. However it is recognized that accurate
cpdfs estimation does not necessarily lead to good classifi-
cation performance [7]. In this paper we take a different
approach, based on the observation that a classification rule
®:R"™ — C, being a total and surjective function, induces a
partition of the feature space R™ into C regions Ri,... , R¢
(decision regions), where R; is the set points which are pre-
images of class ¢; in R™. Starting from this observation, we
propose an algorithm to adapt an initial labeled partition,
where labels represent classes, towards the optimal parti-
tion induced by the Bayes rule. Notice that, in this way,
the function of z we try to approximate is directly ®5(z),
which, under the hypothesis of piecewise continuity of cpdf,
is a piecewise constant function. We encode a labeled par-
tition by a Labeled nearest neighbor Vector Quantizer. A
nearest neighbor Vector Quantizer of size M is a mapping

Q:R" 5 M,

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

(a) (®)

Figure 1: (a) A nearest neighbor VQ of size 8 in R? and (b)
A possible labeled partition induced by labeling the VQ.

where M = {m1,mz,... ,mu}, m; € R",m; # my, which
defines a partition of R™ into M regions Vi,Va,..., Vu,
such that

Vi={z € R" : d(z,m;) < d(z,m;), j#1i}.

V; is the Voronoi region of code vector m; and d is some
distance measure. If the Euclidean measure is adopted, then
Voronoi region boundaries turns out to be piecewise linear.
In particular, the boundary 8; ; between two regions V; and
V; is a piece of the hyperplane equidistant from m; and m;
(see Figure 1(a)). In the following we will always refer to
nearest neighbor VQs with Euclidean distance. The VQ is
extended with a further mapping A:M — C, which assigns a
label from C to each code vector. We will call this extended
VQ a Labeled VQ (LVQ). An LVQ can be used to define
a classification rule: let {; = A(m;) € C denote the label
assigned to m;. The decision taken by the LVQ when z is
presented at its input is

¢qu($)=AOQ(m)=l,, ifz eV (4)

In practice, the classification is performed by finding in M
the code vector at minimum distance from z, and then by
declaring its label. Thus an LVQ implements a simple near-
est neighbor rule, and each point of a Voronoi region V; is
implicitly labeled with the same label of mi. Figure 1(b)
shows an example of labeled partition induced by an LVQ.
Notice that, even if each Voronoi region is convex, we can
construct non-convex and non connected decision regions as
well. Notice also that boundaries between two Voronoi re-
gions with the same label (the dashed lines in Figure 1(b))
do not contribute to the definition of decision region bound-
aries (decision boundaries). The adoption of the simple Eu-
clidean distance limits us to piecewise linear decision bound-
aries. With other, more complex distance measures non lin-
ear boundaries could be obtained as well. In order to develop
an algorithm to find an optimal approximation of the Bayes
partition, a crucial observation is that the average risk of
®rvg depends only on the labeling function A and on the
mutual position of code vectors m;, which determines the
form of the integration regions. Thus, keeping the labeling
function A fixed, and under the continuity hypothesis for
cpdfs, average risk is differentiable w.r.t. M. The gradient
of R(M) w.r.t. the generic m; has been derived for the first

Volume 2, Issue 2 - page 50

time in [4], and has the form

wﬂ(c}) x

| mi —mq ||

ViR(M) = Xc:

M
=1,q#1

X / (mi — z)px|c(z|c])d5'z,
S

9

where dS; denotes the differential surface in the z space.
Almost surprisingly, the variation of the risk w.r.t. code
vector m; depends only on what happens on boundary sur-
faces between V; and each neighbor region V; (obviously S; 4
vanishes if m; and m, are not neighbors), and only in the
case that b(cj,lq) # b%c],l,‘). In the case of error probabil-
ity this means simply that {; # {4, i.e. that the boundary
surface between V; and V, actually represents a part of the
decision boundary. Thus, this result formalizes and general-
izes the intuition of Hart [9] and of the so called “boundary
hunting” methods [1; 17]. The use of a stochastic Parzen es-
timate for py|c(z|c;), and some approximations introduced
for sake of simplicity, for which we refer the interested read-
ers to [4], leads to a class of stochastic gradient algorithms
for the minimization of R(M). Here we consider the algo-
rithm, called Bayes VQ (BVQ), obtained when a uniform
window of side A is adopted as the Parzen window. Assum-
ing that the labeled training set £ = {(t1,u1),..., (tr,ur)}
is given, where t{; € R™ is the feature vector and u; € C is
its class, at each iteration the algorithm considers a labeled
sample randomly picked from the training set. If the sam-
ple turns out to fall near the decision boundary, then the
position of the two code vectors determining the boundary
is updated, moving the code vector with the same label of
the sample towards the sample itself and moving away that
with a different label. More precisely, the k-th iteration of
the BVQ algorithm is:

BV§ Algorithm - k-th <teration

1. randomly pick a training pair (t(¥),u(k)) from C;
5k) and mﬁk)
/* note: certainly such vectors are neighbors! */

2. find the code vectors m nearest to t(k);

k41 k ..
3. mi):mg) for t#14,7;
4. compute t(k) the projection of (%) on 51.(?1;

5,37

5. if || 1) — ") |< A/2 then

m(k+1) = mik) - 'y(k) b(u(k)’lJ) — b(u(k)7li)

{ (k) _ (k)

: g —my [~ ha)

(b41) _ (k) 0 b®) —bu®, L) w
K A S P Y
else m£k+l) = mik) for t=1,7.

Figure 2 illustrates the behavior of BVQ, considering two
equiprobable classes (called black (B) and white (W) class)
and error probability as the performance measure. In this
case, the point P, located where cpdfs coincide is, by def-
inition, the optimal Bayes decision boundary. Figure 2 (a)
shows a set of samples of the W and B classes represented
by small white and black dots respectively, whose distribu-
tion in the feature space follows class statistics. In Figure 2
(b) is depicted an LVQ of size three, with two code vectors
labeled as white and one code vector labeled as black, and
the induced labeled partition. There, are also indicated the
boundaries 812 = 2142 and 8§ 5 = 224™3 | the window,

represented by the shaded area, centered around S:3: and

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

P PiB)

o t o fFot—d—o——
< +« <+« «

m, m, +m, m, m+4m m,
2 2

Figure 2: A graphical representation of the adaptation step
performed by BVQ.

a training sample falling inside the window. Notice that
perturbations of 812 do not change the decisions taken in
its around, which are always in favor of the white class. In
fact, samples falling near S;, are not used to update the
code vectors. Note however that the updating of m, and
ms indirectly influences also S12. Repeated iterations of
BVQ algorithm move Sz from its initial position toward
left, since at the beginning black samples are more frequent
than white samples. This drifting continues until a point
is reached where the frequency of black and white samples
falling inside the window is the same. In the asymptotic
case, the number of samples is arbitrary large, and the op-
timal value of A is zero, so this point is exactly the point
P where cpdfs coincide. In the finite case, P can be only
approached, since A > 0. However, more samples we have,
smaller values of A can be set, more accurate approxima-
tions of the Bayes decision boundary can be found. Exper-
iments in [3; 4] show that the BVQ is capable to construct
a locally optimal linear approximation of the Bayes decision
boundary, and that its classification performance approaches
Bayes risk. There, it is also discussed the main differences
between BVQ and LVQ2.1, a very similar algorithm by Ko-
honen [12], showing that the formal derivation of BVQ from
the average risk prevents him from the stability problems
documented for LVQ2.1.

3. EXPERIMENTAL EVIDENCES

In order to show the advantages of BVQ, we compare it to
the nearest neighbor rule (1-NN), SVM [17] and 1B2 [1]. We
first propose a set of experiments on synthetic data, which
best allow to control the training process and to evaluate the
results. The performance on real data is also considered, on
a set of experiments taken from the UCI Machine Learning
repository.

3.1 Synthetic dataset

The aim of this set of experiments is to show both the clas-
sification performance of the method and the independence
of training and classification costs from the training set size.
To this end, we consider the problem of discriminating be-
tween two multivariate Gaussian sources, whose mean vec-
tors are zero in all dimensions. The two classes are distin-

!Such projection is a function of the two code vectors and
¢k only.

Volume 2, Issue 2 - page 51

guishable because the two covariance matrices are different.
We consider n = 2, Pr(c1) = Pr(cz), and we assume that
both covariance matrices have the form oI, I being the 2x2
identity matrix. We set 02 = 1, 05 = 0.01, so that the Bayes
error probability is equal to 0.027 and the Bayes border is a
circle centered in the origin with radius 0.305. The experi-
mental setting is based on six training sets of increasing size
generated by the same seed, in such a way that each training
set contains all the samples of the smaller one plus others.
On each training set we trained different LVQs with increas-
ing number of code vectors. The problem of local minima
suffered by “greedy” methods afflicts BVQ as well. This can
be alleviated by a proper initialization of code vectors, but
in this case some domain knowledge should be given. In
each experiment, the LVQ was initialized simply by the first
M labeled vectors of the training set. The parameter A was
set to 0.1897, so that the variance of the uniform window is
3%107%. This value turns out to be the optimal value in the
Parzen method. The number of training iterations was fixed
to 40000. As will be clear later, this is a very big number of
iterations, which is sufficient but not necessary to the BVQ
to reach a good minimum in each experiment. The decreas-
ing law for the step size was set to v¥) = 7(0)_]';0'51, where
7% denotes the number of non-null updatings until iteration
k and 49 is an initial value experimentally determined. Af-
ter the training, the error probability is measured on a new
testing set of 10? observations, generated by a different seed.
The same procedure was repeated for three different seeds
and the results averaged. Table 1 reports the average error
probabilities.

Table 1: Error probability vs number of code vectors (rows)
and size of the training set (columns) for the Bayes VQ.

100 200 400 800 1600 3200
2 0.296 | 0.299 | 0.295 | 0.298 | 0.300 | 0.296
4 0.148 | 0.120 | 0.112 | 0.104 | 0.104 | 0.101
8 0.082 | 0.053 | 0.038 | 0.033 | 0.036 | 0.033
6 | 0.072 | 0.039 | 0.033 | 0.028 | 0.029 | 0.028

=

Table 2: Number of effective iterations of the Bayes VQ.
100 200 400 800 1600 3200
2 2393.3 | 1698.7 | 2123.7 | 2234.3 | 2021.7 | 1104.7
(1197) | (129) | (712) | (254) | (123) | (121)
4 1012.3 | 1493.7 2167 2087 1984.3 1288
(721) | (367) | (399) | (389) | (279) | (323)
8 1058 1051.3 | 1060.3 1420 1364.7 914.7
(542) | (373) | (624) | (584) | (511) | (247)
16 746.7 1210 944.3 1016.3 | 1028.3 725

(78) | (285) | (195) | (395) | (117) | (250)

From the table, we can see that the training set size influ-
ences performance, as is natural, and that, for each training
set size, increasing the VQ size allows to enhance perfor-
mance. Nevertheless, we can also appreciate that the best
VQ size is 16 independently of the training set size. This
number of code vectors allows to virtually achieve Bayes
error probability from training set size 400 on. Hence, we
can conclude that the optimal number of code vectors is in-
dependent of the training set size. Table 2 shows for each
experiment the average number of non null updatings in the
first row and, in the second row in brackets, the number of
non null updatings which was approximately necessary to
the algorithm to converge. These values represents approx-
imately the number of updatings after which the estimated

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

error probability settles around the final error probability
and should be considered for qualitative evaluations only.
We can observe a great variability in the number of itera-
tions, even for experiments with the same number of code
vectors. This variability depends from the stochastic nature
of the method, and in particular from the variability of the
initial value of the step size, and from the initial position
of code vectors. Nevertheless, observing the table, we can
conclude that the method rapidly converge to the optimum
with a number of iterations which, substantially, does not
depends from the training set size.

For comparison, in Table 3, we report the error probability
and size of the SVM, IB2 and 1-NN classifiers. The size is
expressed by the number of vectors used in the respective
classification rules. These results were obtained by using
SV M"92 and IBL® on the three training sets, and aver-
aging the results calculated on the testing set, as before. As
we can see, only SVM allows to reach an error performance
comparable with BVQ, but with a number of support vec-
tors much greater than the number of code vectors of BVQ.
Furthermore, for all the methods the size of the classifier is
shown to monotonically increase with the training set size.
In order to stress the BVQ perfomance on large data sets,

Table 3: Error probability and size (in brackets) of the SVM,
IBL and 1-NN classifiers.
100 200 400 800 1600 3200
SVM 0.041 0.034 0.033 0.03 0.028 0.028
(14) | (21.3) | (36.3) | (61) | (119)
IB2 0.072 0.073 0.07 0.075 0.087 0.075
15.7) | (1o7) | (39) | (57.7)
1-NN 0.082 0.053 0.038 0.033 0.036 0.033
(100) | (200) | (400) | (800) | (1600) | (3200)

the algorithm has been run on three training sets of 100.000
samples each, with the parameter A set to 0.06. The aver-
age error probabilities, estimated on a testing set of 100.000
samples, are reported in Table 4, while in Table 5 the average

Table 4: Error probability of the Bayes VQ on the 100.000
data set.

2 | 4 [4 [16 |
[0.299 | 0.103 | 0.035 | 0.029 |

number of effective iterations is considered. As we can see,

Table 5: Number of effective iterations of the Bayes VQ on
the 100.000 data set.
2

4 4 16
12333 | 1472.3 | 964.3 | 624
(40) | (643.3) | (582) | (200)

the performance of the algorithm does not change on this
large size experiment. The LVQ of size 16 is still the best
and 1t still allows to reach an error probability very close to
the Bayes error probability. As to the number of effective
iterations, they refer to a 40.000 iterations long run. In this
way some training sample has not been presented to the al-
gorithm. Although more iterations would allow to present to
the algorithm all the samples, the results reported indicates
that this is not necessary to reach good error probabilities.

2http:/ /www-ai.cs.unidortmund.de/svm light
®http://www.aic.nrl.navy.mil/~aha/software/list.ht ml

Volume 2, Issue 2 - page 52

This can be explained by observing that the richness of the
training set is nevertheless exploited during the training,
since samples are randomly chosen from the pool of data,
and since this allows a smaller window size.

3.2 Experimentswithreal data

In order to confirm the previous findings on real data and
on higher dimensional spaces, we compare the learning al-
gorithms on a set of experiments from the UCI Machine
Learning repository? (see Table 6). Table 7 shows the error

Table 6: The data sets from the UCI Repository used in
experiments.

Data set Size | Dimension
Diabetes 768 8
German 1000 24
Mushroom 8124 22
Australian 690 14
Liver-Disorders 345 6
Ionosphere 351 34

probabilities achieved by SVM, 1-NN and 1B2, together with
the size of each classifier in brackets. Since 1-NN does not
discard any training sample, the size of this classifier corre-
sponds to the training set size. The results are taken from

Table 7: Error probability and size of SVM, 1-NN and 1B2

classifiers on the UCI repository data sets.
Data set SVM 1-NN 1B2
Australian | 0.1537 0.185 0.2642
(203.9) | (603) | (151.5)
Diabetes 0.2292 0.3048 0.3505
(401.7) | (691.2) | (253.5)
German 0.249 0.331 0.388
(487) (900) | (338.7)
Tonosphere | 0.0543 0.1543 0.1314
(167.1) | (315.9) | (54.7)

Liver 0.3132 0.3765 0.4201
(209.7) | (310.5) | (121.8)
Mushroom 0.0 0.0 0.0041

(437.3) | (7311) | (25.6)

Table 8: Error probability vs number of code vectors for the
BVQ on the UCI repository data sets. Values in boldface
denote the best error probability for each experiment.
Data sets 2 4 8 16 32
Australian 0.1493 | 0.1478 0.1449 0.1493 | 0.1435
A = 0.346
Diabetes 0.2396 | 0.2358 | 0.2265 | 0.2358 0.2422
A = 0.49
German 0.291 0.290 0.277 0.270 0.253
A = 1.549
Ionosphere | 0.1454 | 0.1398 0.1343 0.1231 0.112
A =1.897
Liver 0.3338 | 0.3219 0.286 0.3038 0.3033
A =0.154
Mushroom 0.2254 | 0.2129 0.100 0.0242 | 0.0138
A =1.897

[15]. They correspond to average measures obtained by a
10-fold cross validation method. Thus, in order to compare
the results, the same experimental procedure was adopted
for the BVQ. Before applying the BVQ, a normalization of
data is performed, in such a way that each feature ranges
in the same interval. This is a invertible transformation of

*http://www.ics.uci.edu/~mlearn/MLRepository.html

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

data which allows to give equal importance to each vector
component during the learning. In Table 8 we report, for
each experiment, the optimal value of the parameter A and
the best error performance achieved by BVQ with LVQs of
varying size. Some comments on this table are in order.
First, we have to report a phenomenon typical of VQ archi-
tectures, called the “dead neuron problem” by Kohonen. In
practice, it can happens that a code vector is never used to
classify input data. The removal of such code vectors would
not modify the error probability for the data at hand. Thus
the number of code vectors reported is always greater than
or equal to the true number of used code vectors. Second,
we can observe a non monotonic trend of error probability
vs number of code vectors for the australian, diabetes and
liver data sets. This somewhat counter intuitive result can
be explained by the intrinsic ”jitter” of stochastic methods,
which make the system to wander around the optimum, by
the dead neuron problem and by the dependency of the re-
sult from initialization and labeling of code vectors.
Turning to the comparison of results in Tables 7 and 8, the
BVQ almost always reach a better error probability than the
other methods, except for the mushroom experiment, where
it is the worst. In this experiment, samples are described
by purely categorical features, hence cpdfs are not piecewise
continuous, so the basic assumption for the applicability of
the method is not satisfied. As a consequence, we can re-
port a long number of iterations needed to converge, and
a great sensitivity of the algorithm to the initialization of
code vectors and to the value of the parameter 7(0) . On the
other hand, the algorithm proves to work nicely if at least
some feature turns out to be continuous, as it is the case for
the other experiments. Apart from the special mushroom
case, BV(Q performance are surpassed only by SVM on the
ionosphere data set. For this experiment, we failed to find a
number of code vectors for which a comparable error prob-
ability could be obtained. This fact can be related to the
small training set size, especially compared with the dimen-
sion of the feature space. Thus, from the perspective of
very large databases, this result is not very serious. On the
other hand, the advantage of BVQ in memory requirements
is striking. As we can see, two code vectors are sufficient
to the BVQ to obtain an error probability lower than all
the others for the australian data set, they are sufficient to
reach a lower error probability than 1-NN in all the experi-
ments and a lower error probability than 1B2 in all but the
ionosphere experiment. The highest memory requirements
for the BVQ are on the german data set, where 32 code
vectors are needed to reach an error probability compara-
ble with that of SVM, which needs 487 vectors out of 900
training samples. Furthermore, the artificial experiments
presented in the previous section state that the optimal size
of the BVQ classifier depends only from the geometry of the
problem (number of classes, shape of decision regions), while
for the other methods the classifier size depends on the the
training set size.

The size of BVQ, IB2 and 1-NN classifiers allows also to
directly compare their computational cost, as they all are
nearest neighbor methods. For instance, on the german data
set the BVQ allows to classify a sample by calculating only
2 distances, against the 900 distance calculation of the 1-
NN and the 339 distance calculation of 1B2. The decision
function of SVM takes a different form. SVM can directly

Volume 2, Issue 2 - page 53

manage only two class problems®. Assuming that class la-
bels are encoded by integers —1 and 1 respectively, SVM
decision function is

s
Dsvm(z) = sgn[z wia; K (z - si) + b, (5)
i=1
where, {(s1,u1),...,(ss,us)} C L is the set of Support
Vectors and S is the size of the classifier. K(-) is either a
linear or a non linear kernel (typical kernels are the gaussian
and sigmoid functions). If K is a linear kernel, then this
decision function requires approximately the same number
of multiplications of (4). In fact, we can rearrange the last
one as follows

Prvele) = A(Irg?_l{ll mi = |[*})

Almin ™ (]| mi |~z - m.}).

Hence, if we store the square norm of code vectors, which
equals the cost of storing the weights «; in SVM, both the
decision functions require a number of inner products equal
to the size of the classifier. In the general case, however,
the SVM decision function is computationally heavier, since
we have to add the cost of the non linear kernels calculus.
In the above experiments the kernel adopted is always gaus-
sian, except for the mushroom experiment, where it is linear.
Concluding, comparing the size of BVQ and SVM classifiers
we can establish an even greater computational advantage
of the former over the latter than the advantage observed
over 1-NN and 1B2.

4. CONCLUSIONS

In the paper we showed that compression capabilities of the
VQ architecture can be exploited to find a simple and effec-
tive classification rule by a very small number of vectors,
when we train it with the stochastic gradient algorithm
BVQ. Comparison to other classification techniques have
been presented on both artificial and real data sets. The
results show the advantage of BVQ over the other methods
when only classification performance are considered, and a
striking advantage when both classification performance and
costs are taken into account. These results put the BVQ
algorithm as a promising technique for the induction of pre-
dictive models from huge amounts of data, especially in the
light of the fact that it performs local computations based on
only one sample for each iteration. Local computations are
simple to implement on parallel architectures, while the use
of one sample per iteration allows to keep data on hard disk,
with no accuracy vs efficiency tradeoff typical of data reduc-
tion techniques. Furthermore, although in the experiments
we concentrate on error probability as the performance mea-
sure, the BVQ is a general algorithm for the minimization of
average risk. Thus the introduction of cost matrices in the
formulation of the classification problem can be supported
as well. This feature is important for practical applications,
where some classification errors are often considered more
serious than others (for instance, evaluating a client reliable
for a loan when it is unreliable can be more dangerous for

Sproblems with C > 2 classes have to be managed by de-
signing C different classifiers, each separating one class from
the rest [14]

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

a bank than evaluating a reliable client unreliable). Direc-
tions of research include the study of methods to further
improve performance, by finding better initialization strate-
gles of code vectors and developing non greedy versions of
the algorithm to escape local minima, and the introduction
of more general distance measures. Also of interest is the
study on the exploitation of geometric characteristics of VQs
in order to extract symbolic classification rules from it.

5. ACKNOWLEDGEMENTS

The authors wish to thank the anonymous referees which,
with their comments, helped in improving the quality of the
manuscript.

6. REFERENCES

[1] D. W. Aha, D. Kibler, and M. K. Albert. Instance-
based learning algorithms. Machine Learning, 6(1):37—
66, 1991.

[2] T. M. Cover and P. E. Hart. Nearest neighbor Pat-
tern Classification. IEEE Trans. on Information The-
ory, 13(1):21-27, Jan. 1967.

[3] C. Diamantini and A. Spalvieri. Vector quantization
for minimum error probability. In Proc. Int. Conf. on
Artificial Neural Networks, volume 2, pages 1091-1094,
May 1994.

[4] C. Diamantini and A. Spalvieri. Quantizing for Mini-
mum Average Misclassification Risk. IEEE Trans. on
Neural Networks, 9(1):174-182, Jan. 1998.

[5] P. Domingos and M. Pazzani. On the Optimality of the
Simple Bayesian Classifier under Zero-One Loss. Ma-
chine Learning, 29:103-130, 1997.

[6] U. M. Fayyad. Editorial. Data Mining and Knowledge
Discovery, 1(1):5-10, 1997.

[7] J. H. Friedman. On Bias, Variance, 0/1-Loss, and the
Curse-of-Dimensionality. Data Mining and Knowledge
Discovery, 1(1):55-77, 1997.

[8] A. Gersho and R. M. Gray. Vector Quantization
and Signal Compression. Kluwer Academic Publishers,
1992.

[9] P. E. Hart. The condensed nearest neighbor rule. IEEE
Trans. Information Theory, 4:515-516, May 1968.

[10] S. Haykin. Neural Networks: A Comprehensive Foun-
dation, 2nd Ed. Prentice Hall, New Jersey, 1999.

[11] T. Joachims. Making Large-Scale SVM Learning Prac-
tical. In B. Scholkopf, C. J. Burges, A. J. Smola, editor,
Advances in Kernel Methods - Support Vector Learning.
MIT Press, 1999.

[12] T. Kohonen. The self organizing map. Proc. of the
IEEE, 78(9):1464-1480, Sept. 1990.

[13] F. J. Provost and V. Kolluri. A survey of methods for
scaling up inductive learning algorithms. Tech. Rep.
[S1.-97-3, Intelligent System Lab., Dept. of Comp. Sci-
ence, Univ. Pittsburg, 1997.

Volume 2, Issue 2 - page 54

[14] B. Schoelkopf, C. Burges, and V. Vapnik. Extracting
Support Data for a Given Task. In U. Fayyad and
R. Uthurusamy, editors, Proc. 1st Int. Conf. on Knowl-
edge Discovery and Data Mining, Menlo Park, CA,
1995. AAAI Press.

[15] N. A. Syed, H. Liu, and K. K. Sung. A Study of Sup-
port Vectors on Model Independent Example Selec-
tion. In S. Chaudhuri and D. Madigan, editors, Proc.
5th ACM SIGKDD Conf. on Knowledge Discovery and

Data Mining, pages 272-276, New York, 1999. ACM
Press.

[16] N. A. Syed, H. Liu, and K. K. Sung. Handling Concept
Drift in Incremental Learning with Support Vector Ma-
chines. In S. Chaudhuri and D. Madigan, editors, Proc.
5th ACM SIGKDD Conf. on Knowledge Discovery and
Data Mining, pages 317-321, New York, 1999. ACM
Press.

[17] V. Vapnik. Statistical Learning Theory. J. Wiley and
Sons, New York, 1998.

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000. Volume 2, Issue 2 - page 55

