Scalable Data Mining with Model Constraints

Minos Garofalakis

Bell Labs, Lucent Technologies
600 Mountain Avenue
Murray Hill, NJ 07974

minos@research.bell-labs.com

ABSTRACT

Data mining can be abstractly defined as the process of ex-
tracting concise and interesting models (or, patterns) from
large amounts of data. Unfortunately, conventional mining
systems provide users with only very restricted mechanisms
for specifying models of interest. As a consequence, the
mining process is typically characterized by lack of focus
and users often end up paying computational costs that are
inordinately high compared to the specific models/patterns
of interest. Exploiting user-defined model constraints dur-
ing the mining process can help alleviate this problem and
ensure system performance that is commensurate with the
level of user focus. Attaining such performance goals, how-
ever, is not straightforward and, typically, requires the de-
sign of novel data mining algorithms that make effective
use of the model constraints. In this paper, we provide an
overview of our recent work on scalable, constraint-based
algorithms for (1) decision tree construction with size and
accuracy constraints for the desired decision tree model, and
(2) sequential pattern extraction in the presence of struc-
tural, regular expression constraints for the target patterns.
By “pushing” the model constraints inside the mining pro-
cess, our algorithms give mining users exactly the mod-
els that they are looking for, while achieving performance
speedups that often exceed one order of magnitude. Further,
our work on sequential pattern mining has uncovered some
valuable insights into the tradeoffs that arise when complex
constraints that do not subscribe to “nice” properties (like
anti-monotonicity) are integrated into the mining process.
We argue that, in general, a cost-based approach (similar to
that employed in conventional query optimizers) is needed to
explore these tradeoffs in a principled manner and produce
effective execution plans for ad-hoc mining queries.
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1. INTRODUCTION

At a high level, all data mining techniques have the same
goal, namely, that of efficiently extracting concise and in-
teresting models from large amounts of data. These models
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can range from Bayesian networks [7; 8] and decision or re-
gression trees [11; 17], to dense clusters [12] and frequent
patterns [1; 20] in the data. This model-mining process
is computation-intensive, typically requiring multiple passes
over the input data. As a consequence, the design of ef-
fective mining algorithms has been the subject of intense
research efforts in recent years.

A major common thread that runs across the vast major-
ity of proposed mining algorithms is the lack of “knobs”
that allow users to specify constraints on the models be-
ing mined; this, in turn, means that the mining process is
typically characterized by lack of user-controlled focus. For
example, the interaction of the user with a conventional pat-
tern mining system is limited to specifying a lower bound on
the desired support for the extracted patterns. The system
then executes an appropriate mining algorithm and returns
a very large number of sequential patterns, only some of
which may be of actual interest to the user. As another
example, decision-tree induction algorithms typically return
a tree model for a specified class attribute that is “opti-
mal” in an information-theoretic sense (e.g., based on Ris-
sanen’s Minimum Description Length (MDL) principle [14;
16]). Unfortunately, such decision tree structures can be
extremely complex, comprising hundreds or thousands of
nodes and, consequently, very difficult to comprehend and
interpret. This is a serious problem and calls into question
an often-cited benefit of decision trees, namely that they are
easy to assimilate by humans.

Conventional, “unfocused” approaches to model mining suf-
fer from two major drawbacks. First, they imply dispropor-
tionate computational cost for “selective” users. Despite the
development of efficient algorithms, extracting models from
a large database remains a computation-intensive task that
can often take many hours to complete. Often, however,
users are highly “selective” in the sense that they are only
interested in models of a very specific form. For example, a
user may only want to discover sequential patterns that con-
form to a very specific structure or very concise decision tree
models that only provide a “rough picture” of the class at-
tribute. Ignoring user focus can be extremely unfair to such
selective users. Ideally, the computational cost of the mining
process should be commensurate with the level of user focus
(i.e., selective users should not be penalized for something
that they did not ask for). Second, they result in an over-
whelming volume of potentially useless model rules or pat-
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terns. The lack of user-level focus during the mining process
means that selective users will typically be swamped with
a huge number of model rules or patterns, most of which
are useless for their purposes. Sorting through a morass of
patterns to find specific forms or trying to identify “strong”
rules in a thousand-node decision tree can be a daunting
task, even for the most experienced user.

In this paper, we provide an overview of our recent work on
scalable, constraint-based algorithms for (1) decision tree
construction with size and accuracy constraints for the de-
sired decision tree model [9], and (2) sequential pattern ex-
traction in the presence of structural, regular expression con-
straints for the target patterns [10]. Our contributions can
be summarized as follows.

¢ Constrained Decision Tree Induction [9]. We have
developed novel algorithms that allow users to effectively
trade accuracy for simplicity during the decision tree in-
duction process. Our framework gives users the ability to
specify constraints on either (1) the size (i.e., number of
nodes); or, (2) the inaccuracy (i.e., MDL cost [14; 16; 17]
or number of misclassified records) of the target classifier,
and then exploits these constraints to efficiently construct
the “best possible” decision tree.

More specifically, our main contribution lies in the intro-
duction of novel decision tree induction algorithms that in-
tegrate size and accuracy constraints into the tree-building
phase. Our algorithms employ branch-and-bound techniques
to identify, during the growing of the decision tree, nodes
that cannot possibly be part of the final constrained sub-
tree. Since such nodes are guaranteed to be pruned when
the user-specified size/accuracy constraints are enforced, our
algorithms stop expanding such nodes early on. Further-
more, by only pruning nodes that are guaranteed not to be-
long to the optimal constrained subtree, we are assured that
the final (sub)tree generated by our integrated approach is
eractly the same as the subtree that would be generated
by a naive approach that enforces the constraints only af-
ter the full tree is built. Determining, during the building
phase, whether a node will be pruned by size or accuracy
constraints is problematic, since the decision tree is only par-
tially generated. To guarantee that only suboptimal parts of
the tree are pruned, our branch-and-bound induction algo-
rithms compute lower bounds on the inaccuracy (MDL cost
or number of misclassifications) of the subtree rooted at a
node (based on the corresponding set of training records).

¢ Constrained Sequential Pattern Discovery [10]. We
have formulated the problem of mining sequential patterns
with Regular Ezpression (RE) constraints on the structure
of the discovered patterns, and we have developed a novel
family of algorithms (termed SPIRIT — Sequential Pattern
mIning with Regular expresslon consTraints) for mining fre-
quent sequential patterns that also belong to the language
defined by the user-specified RE. Our algorithms exploit the
equivalence of REs to deterministic finite automata [13] to
push RE constraints deep inside the pattern mining compu-
tation. The main distinguishing factor among the proposed
schemes is the degree to which the RE constraint is en-
forced within the generation and pruning of candidate pat-
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terns during the mining process. We observe that, varying
the level of user focus (i.e., RE enforcement) during pat-
tern mining gives rise to certain interesting tradeoffs with
respect to computational effectiveness. Enforcing the RE
constraint at each phase of the mining process certainly min-
imizes the amount of “state” maintained after each phase,
focusing only on patterns that could potentially be in the
final answer set. On the other hand, minimizing this main-
tained state may not always be the best solution since it
can, for example, limit our ability to do effective support-
based pruning in later phases. Such tradeoffs are obviously
related to the fact that, in general, RE constraints are not
anti-monotone [15]; thus, effectively integrating REs into
Apriori-style mining is not straightforward. We believe that
our results provide useful insights into the more general
problem of constraint-driven, ad-hoc data mining, showing
that there can be a whole spectrum of choices for dealing
with constraints, even when they do not subscribe to nice
properties like anti-monotonicity or succinctness [15].

For both constraint-based mining scenarios, our experimen-
tal results with both synthetic and real-life data sets have
clearly validated the effectiveness of exploiting model con-
straints during the mining process, demonstrating that more
than an order of magnitude improvement in performance is
often possible. Further, our work on sequential pattern min-
ing has uncovered some valuable insights into the tradeoffs
that arise when complex model constraints are integrated
into the mining process. We argue that, in general, a cost-
based approach (similar to that employed in conventional
query optimizers) is needed to explore these tradeoffs in a
principled manner and produce effective execution plans for
ad-hoc mining queries.

2. DECISION TREE INDUCTIONWITHSIZE

AND ACCURACY CONSTRAINTS

2.1 Problem Formulation

Preliminaries. We begin by presenting a brief overview
of the building and pruning phases of a traditional decision
tree classifier. More detailed descriptions of existing decision
tree induction algorithms can be found in [4; 17; 19].

The overall algorithm for growing a decision tree classifier is
depicted in Figure 1(a). Basically, the tree is built breadth-
first by recursively partitioning the data until each partition
is pure (i.e., it only contains records belonging to the same
class). The splitting condition for each internal node of the
tree is selected so that it minimizes an impurity function,
such as the entropy, of the induced data partitioning [4].
To prevent overfitting of the training data, the MDL princi-
ple [14; 16] is applied to prune the tree built in the growing
phase and make it more general. Briefly, the MDL principle
states that the “best” tree is the one that can be encoded
using the smallest number of bits. The cost of encoding the
tree comprises three distinct components: (1) the cost of en-
coding the structure of the tree (single bit); (2) the cost of
encoding for each split, the attribute and the value for the
split (Cspist(IN) is used to denote the cost of encoding the
split at node N); and, (3) the cost of encoding the classes

Volume 2, Issue 2 - page 40



Procedure BUILDTREE(S)

begin

1. Initialize root node using data set S

2. Initialize queue @ to contain root node
3. while Q is not empty do {

4 dequeue the first node N in Q

5. if node N is not pure {

6 for each attribute A

7 Evaluate splits on attribute A
8. Use best split to split N into N and N3
9. Append N; and N2 to Q

0. }

11. }

end

(a)

Procedure PRUNETREE(Node N)
begin
1. if N is a leaf return (C(S) + 1)
minCost; := PRUNETREE(Ny );
minCostz := PRUNETREE(N3 );
minCosty = min{C(S) +1,
Cspiit(N) + 1+ minCost; + minCosta };

if minCosty = C(S) + 1

prune child nodes N1 and N2 from tree
return minCost y
end

=W N

N oo

(b)

Figure 1: (a) Tree-building algorithm. (b) Tree-pruning algorithm.

of data records in each leaf of the tree (C(S) is the cost of
encoding the classes for records in set S). In the rest of this
section, we refer to the cost of encoding a tree computed
above as the MDL cost of the tree. Also, for a node N of
the tree, we use S to denote the set of records in N, and N;
and N» to refer to the children of N.

The goal of the pruning phase is to compute the minimum
MDL-cost subtree of the tree T constructed in the building
phase. Briefly, this is achieved by traversing 7" in a bottom-
up fashion, pruning all descendents of a node N if the cost
of the minimum-cost subtree rooted at N is greater than
or equal to C(S) + 1 (i.e., the cost of directly encoding the
records corresponding to V). The cost of the minimum-cost
subtree rooted at N is computed recursively as the sum of
the cost of encoding the split and structure information at
N (Csprit(N) + 1) and the costs of the cheapest subtrees
rooted at its two children. Figure 1(b) gives the pseudocode
for the pruning procedure that computes the subtree of T’
with minimum MDL cost; more details can be found in [17].

Problem Statement. Let T be the complete tree con-
structed during the conventional tree-building phase. Our
goal is to develop efficient algorithms for computing the min-
imum MDL-cost subtree of 1" in the presence of size con-
straints. More specifically, our problem can be stated as
follows: “For a given k, compute the subtree Ty of T com-
prising at most k nodes and has the minimum possible MDL
cost.” (The treatment of accuracy constraints can be found
in the full version of [9].)

2.2 Pushing Constraints into Tree-Building

Bohanec and Bratko [3] and Almuallim [2] present dynamic
programming algorithms for computing the minimum cost
subtree that satisfies the size constraint. However, the pro-
posed dynamic programming algorithms enforce the user-
specified size/accuracy constraints only after a full decision
tree has been grown by the building algorithm. As a conse-
quence, substantial effort (both I/O and CPU computation)
may be wasted on growing portions of the tree that are sub-
sequently pruned when constraints are enforced. Clearly,
by “pushing” size and accuracy constraints into the tree-
building phase, significant gains in performance can be at-
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tained. In this section, we present such integrated deci-
sion tree induction algorithms that integrate the constraint-
enforcement phase into the tree-building phase instead of
performing them one after the other.

Our integrated algorithms are similar to the BUILDTREE
procedure depicted in Figure 1(a). The only difference is
that periodically or after a certain number of nodes are split
(this is a user-defined parameter), the partially built tree T},
is pruned using the user-specified size/accuracy constraints.
Note, however, the pruning algorithm in Figure 1(b) cannot
be used to prune the partial tree.

The problem with applying constraint-based pruning before
the full tree has been built is that, in procedure PRUNE-
TREE (Figure 1(b)), the MDL cost of the cheapest subtree
rooted at a leaf N is assumed to be C(S) + 1 (Step 1).
‘While this is true for the fully-grown tree, it is not true
for a partially-built tree, since a leaf in a partial tree may
be split later thus becoming an internal node. Obviously,
splitting node N could result in a subtree rooted at N with
cost much less than C(S) + 1. Thus, C(S) + 1 may over-
estimate the MDL cost of the cheapest subtree rooted at IV
and this could resulting in over-pruning; that is, nodes may
be pruned during the building phase that are actually part
of the optimal size- or accuracy-constrained subtree. This is
undesirable since the final tree may no longer be the optimal
subtree that satisfies the user-specified constraints.

In order to perform constraint-based pruning on a partial
tree Tp, and still ensure that only suboptimal nodes are
pruned, we adopt an approach that is based on the follow-
ing observation. (For concreteness, our discussion is based
on the case of size constraints.) Suppose U is the cost of
the cheapest subtree of size at most k of the partial tree
Tp. Note that this subtree may not be the final optimal
subtree, since expanding a node in T}, could cause its cost
to reduce by a substantial amount, in which case, the node
along with its children may be included in the final subtree.
U does, however, represent an upper bound on the cost of
the final optimal subtree Ty. Now, if we could also compute
lower bounds on the cost of subtrees of various sizes rooted
at nodes of T}, then we could use these lower bounds to de-
termine the nodes N in T}, such that every potential subtree
of size at most k (of the full tree T') containing N is guar-
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Procedure CoMPUTECOSTUSINGCONST(Node N, integer [)
begin
1. if Tree[N, l].computed = true
return [Tree[NV, [].realCost, Tree[N, [].lowCost]
else if [ < 3 or N is a “pruned” or “not expandable” leaf
Tree[N, [].realCost := Tree[N, {].lowCost := C(S) + 1
else if NV is a “yet to be expanded” leaf {
Tree[N, l].realCost := C(S) +1
Tree[N, {].lowCost := lower bound on cost of subtree
cost rooted at IV with at most | nodes
8. }else{
9. Tree[N, l].lowCost := Tree[N, l].realCost := C(S) + 1
10. for ki :=1tol — 2do{

No ok

11. ko i =1 —k —1
12. [realCost1, lowCost1] :=
ComprUTECOSTUSINGCONST(N1, k1)
13. [realCosty, lowCosts] :=
CompPUTECOSTUSINGCONST (N2, k2)
14. if realCost1 + Cypii¢(N) + 1 + realCosta <
Tree[N, l].realCost
15. Tree[N, I].realCost := realCost1 + Cyppi¢ (IN)+
1 + realCosto
16. if lowCost1 + Cypi¢(N) + 1 + lowCosta <
Tree[N, l].lowCost
17. Tree[N, I].lowCost := lowCost1 + Cjpri(N)+
1 + lowCosts
18, }
19. }

20. Tree[N, l].computed := true
21. return [Tree[N, [].realCost, Tree[N, [].lowCost]
end

Figure 2: Computing minimum MDL-cost subtrees using
lower bounds.

anteed to have a cost greater than U. Clearly, such nodes
can be safely pruned from 7}, since they cannot possibly be
part of the optimal subtree whose cost is definitely less than
or equal to U.

‘While it is relatively straightforward to compute U, we still
need to (1) estimate the lower bounds on cost at each node
of the partial tree T, and (2) show how these lower bounds
can be combined with the upper bound U (in a “branch-
and-bound” fashion) to identify prunable nodes of 7}.

Computing Lower Bounds on Subtree Costs. To ob-
tain lower bounds on the MDL cost of a subtree at arbitrary
nodes of T}, we first need to be able to compute lower bounds
for subtree costs at leaf nodes that are “yet to be expanded”.
These bounds can then be propagated “upwards” to obtain
lower bounds for other nodes of T},. Obviously, any subtree
rooted at node /N must have an MDL cost of at least 1, and
thus 1 is a simple, but conservative estimate for the MDL
cost of the cheapest subtree at leaf nodes that are “yet to be
expanded”. In our earlier work [17], we have derived more
accurate lower bounds on the MDL cost of subtrees by also
considering split costs.

Computing an Optimal Size-Constrained Subtree.
As described earlier, our integrated constraint-pushing strat-
egy involves the following three steps, which we now describe
in more detail: (1) compute the cost of the cheapest sub-
tree of size (at most) k of the partial tree T}, (this is an
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Procedure PRUNEUSINGCONST(Node N, integer [, real B)
begin
1. Mark node N
if B < Bound[N, [] return
fori:=1tol do
if B > Bound[N, i]
Bound[N, ] := B
if Tree[NV, {].lowCost > B or
Tree[N, [].lowCost = C(S) + 1

AN S

7 return

8. else if N is not a leaf node and | > 3 {

9. for k1 :=1to!l — 2do {

10. ko =1 —k1 —1

11 if Cypist(IN) + 14 Tree[N1, k1].JlowCost +
Tree[N2, k2].lowCost < B {

12. By := B — (Cspis¢ (N) + 1)— Tree[N2, ka].lowCost
13. By := B — (Cspis¢ (N) + 1)— Tree[N1, k1].lowCost
14. PRUNEUSINGCONST(N1, k1, B1);

15. PRUNEUSINGCONST (N2, k2, B2);

16. 1

7.}

18. }

end

Figure 3: Branch-and-bound pruning algorithm.

upper bound U on the cost of the final optimal tree T');
(2) compute lower bounds on the cost of subtrees of vary-
ing sizes that are rooted at nodes of the partial tree Tp;
and, (3) use the bounds computed in steps (1) and (2) to
identify and prune nodes that cannot possibly belong to the
optimal constrained subtree Ty. Procedure COMPUTECOS-
TUSINGCONST (depicted in Figure 2) accomplishes the first
two steps, while procedure PRUNEUSINGCONST (depicted in
Figure 3) achieves step (3).

Procedure CompUTECOSTUSINGCONST distinguishes among
three classes of leaf nodes in the partial tree. The first class
includes leaf nodes that still need to be expanded (“yet to
be expanded”). The two other classes consist of leaf nodes
that are either the result of a pruning operation (“pruned”)
or cannot be expanded any further because they are pure
(“not expandable”). CoMPUTECOSTUSINGCONST uses dy-
namic programming to compute in Tree[N, [].realCost the
MDL cost of the cheapest subtree of size at most [ that is
rooted at N in the partially-built tree. In addition, Com-
PUTECOSTUSINGCONST also computes in Tree[V, {].lowCost
a lower bound on the MDL cost of the cheapest subtree with
size at most [ that is rooted at N (if the partial tree were
expanded fully) — the lower bounds on the MDL cost of sub-
trees rooted at “yet to be expanded” leaf nodes are used for
this purpose. The only difference between the computation
of the real costs and the lower bounds is that, for a “yet to be
expanded” leaf node N, the former uses C(S) + 1 while the
latter uses the lower bound for the minimum MDL-cost sub-
tree rooted at N. Procedure CoMPUTECOSTUSINGCONST
is invoked with input parameters R and k, where R is the
root of T, and k is the constraint on the number of nodes.
Again, note that U = Tree[R, k].realCost represents an up-
per bound on the cost of the final optimal subtree satisfying
the user-specified constraints.

Once the real costs and lower bounds are computed, the
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next step is to identify prunable nodes N in T}, and prune
them. A node N in T}, is prunable if every potential subtree
of size at most k (after “yet to be expanded leaves” in T}, are
expanded) that contains node N is guaranteed to have an
MDL cost greater than Tree[R, k].realCost. Invoking proce-
dure PRUNEUSINGCONST(illustrated in Figure 3) with input
parameters R (root node of T},), k, and Tree[R, k].realCost
(upper bound on the cost of 1) ensures that every non-
prunable node in T}, is marked. Thus, after PRUNEUSING-
CONST completes execution, it is safe to prune all unmarked
nodes from T}, since these cannot possibly be in the MDL-
optimal subtree T with size at most k.

Intuitively, procedure PRUNEUSINGCONST works by using
the computed lower bounds at nodes of T}, in order to “prop-
agate” the upper bound (Tree[R, k].realCost) on the cost of
Ty down the partial tree T}, (Steps 12-15). Assume that
some node N (with children N; and N-) is reached with a
“size budget” of [ and a cost bound of B. If there exists some
distribution of I among N; and N> such that the sum of the
corresponding lower bounds does not exceed B (Steps 9-
11), then Ny and N2 may belong the optimal subtree and
PRUNEUSINGCONST is invoked recursively (Steps 12-15) to
(a) mark N; and N (Step 1), and (b) search for nodes that
need to be marked in the corresponding subtrees. Thus,
nodes N7 and Ny will be left unmarked if and only if, for ev-
ery possible size budget that reached N, no combination was
ever found that could beat the corresponding upper bound
B.

More formally, consider a node N’ in the subtree of T}, rooted
at V; and let [ and B denote the size budget and cost upper
bound propagated down to N (parent of N1 and N»). We say
that N’ is prunable with respect to (N, 1, B) if every potential
subtree of size at most [ (after T} is fully expanded) that
is rooted at N and contains N’, has an MDL cost greater
than B. PRUNEUSINGCONST is based on the following key
observation: If N’ is not prunable with respect to (N, I, B),
then, for some 1 < k; <1 —2,

1. Copist(N) + 1+ Tree[Ni, ki]lowCost + Tree[Na, I —
k1 — 1].lowCost < B, and

2. N’ is not prunable with respect to (N1, k1, B—(Cispiit (N)+

1)— Tree[N3, I — k1 — 1].lowCost ).

That is, if N’ is not prunable with respect to (N, I, B) then
there exists a way to distribute the size budget ! along the
path from N down to N/ such that the lower bounds on the
MDL cost never exceed the corresponding upper bounds,
on all the nodes in the path. Obviously, N/ is not prunable
(i.e., should be marked) if it is not prunable with respect to
some triple (N, 1, B). Based on these observations, we can
formally prove that if a node in 7T}, is not prunable, then it is
marked by procedure PRUNEUSINGCONST. (The proof can
be found in the full version of [9].)

As an optimization, procedure PRUNEUSINGCONST main-
tains the array Bound[] in order to reduce computational
overheads. Each entry Bound[N, [] is initialized to 0 and is
used to keep track of the maximum value of B with which
PRUNEUSINGCONST has been invoked on node N with size
budget I’ > 1. The key observation here is that if a node
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N’ in the subtree rooted at IV is not prunable with respect
to (IV,l, B), then it is also not prunable with respect to
(N,I', B"), for all B' > B, I' > I. Intuitively, this says that
if we have already reached node N with a cost bound B’
and size budget I, then invoking PRUNEUSINGCONST on N
with a smaller bound B < B’ and smaller size budget [ < I’
cannot cause any more nodes under N to be marked. Thus,
when such a situation is detected, our marking procedure
can simply return (Step 2).

Overview of Experimental Results. To investigate the
performance gains that can be realized as a result of exploit-
ing size and accuracy constraints, we have conducted an ex-
tensive experimental study on real-life as well as synthetic
data sets. Our experimental results with both types of data
sets clearly demonstrate the effectiveness of integrating the
user-specified constraints into the tree-building phase. Our
constraint-pushing algorithms always result in significant re-
ductions in execution times that are sometimes as high as
two or three orders of magnitude. For the complete details,
the interested reader is referred to the full version of [9].

3. SEQUENTIAL PATTERN DISCOVERY
WITH RE CONSTRAINTS

3.1 Problem Formulation

Preliminaries. The main input to our pattern-mining prob-
lem is a database of sequences, where each sequence is an
ordered list of clements. These elements can be either (a)
simple itemns from a fixed set of literals (e.g., the identifiers
of WWW documents available at a server [6], the amino
acid symbols used in protein analysis [21]), or (b) itemsets,
that is, non-empty sets of items (e.g., books bought by a
customer in the same transaction [20]). The list of elements
of a data sequence s is denoted by < s1 s2 -+ s, >, where s;
is the i'" element of s. We use |s| to denote the length (i.e.,
number of elements) of sequence s. A sequence of length k
is referred to as a k-sequence.

Comnsider two data sequences s =< s1 s2 --- $p, > and
t =<ti ty -+ t,, >. We say that s is a subsequence of
t if s is a “projection” of ¢, derived by deleting elements
and/or items from ¢. More formally, s is a subsequence
of ¢ if there exist integers j1 < j» < ... < jn such that
51 C tjy, 82 C tjy, ..., sn € tj,. Note that for sequences
of simple items the above condition translates to s; = t;,,
s$2 =tj,, ..., Sn = tj,. For example, sequences < 13 > and
<124 > are subsequences of <12 34 >, while <31 >
is not. A sequence s is said to contain a sequence p if p is
a subsequence of s. We define the support of a pattern p as
the fraction of sequences in the input database that contain
p. Given a set of sequences S, we say that s € § is mazimal
if there are no sequences in § — {s} that contain it.

A RE constraint R is specified as a RE over the alphabet of
sequence elements using the established set of RE operators,
such as disjunction (|) and Kleene closure (*) [13]. Thus, a
RE constraint R specifies a language of strings over the ele-
ment alphabet or, equivalently, a regular family of sequential
patterns that is of interest to the user. A well-known result
from complexity theory states that REs have exactly the

Volume 2, Issue 2 - page 43



same expressive power as deterministic finite automata [13].
Thus, given any RE R, we can always build a determinis-
tic finite automaton Ag such that Ax accepts exactly the
language generated by R. Informally, a deterministic finite
automaton is a finite state machine with (a) a well-defined
start state (denoted by a) and one or more accept states,
and (b) deterministic transitions across states on symbols
of the input alphabet (in our case, sequence elements). A
transition from state b to state ¢ on element s; is denoted by
b 3 c. We also use the shorthand b = ¢ to denote the se-
quence of transitions on the elements of sequence s starting
at state b and ending in state c¢. A sequence s is accepted by
Ax if following the sequence of transitions for the elements
of s from the start state results in an accept state. Figure 4
depicts the state diagram of a deterministic finite automa-
ton for the RE 1* (22|23 4|4 4) (ie., all sequences of
zero or more 1’s followed by 2 2, 2 3 4, or 4 4). Following
[13], we use double circles to indicate an accept state and >
to emphasize the start state (a) of the automaton.

wcdf

Figure 4: Automaton for the RE 1* (22234 |44).

Problem Statament. Given an input database of se-
quences, we define a sequential pattern to be frequent if its
support in the database exceeds a user-specified minimum
support threshold. In our work [10], we have proposed novel,
efficient algorithms for mining frequent sequential patterns
in the presence of user-specified RE constraints. (We focus
on sequences of simple items with no max-distance bounds
for pattern occurrences; the modifications necessary to han-
dle itemset sequences and distance bounds are described in
the full version of [10].) The following definitions establish
some useful terminology for our discussion.

DEeFINITION 3.1. A sequence s is said to be legal with re-
spect to state b of automaton Ax if every state transition in
A is defined when following the sequence of transitions for
the elements of s from b.

DEFINITION 3.2. A sequence s is said to be wvalid with
respect to state b of automaton Ax if s is legal with respect
to b and the final state of the transition path from b on input
s is an accept state of Ag. We say that s is valid if s is valid
with respect to the start state a of Az (or, equivalently, if
s is accepted by Agr).

ExaMPLE 3.1. Consider the RER = 17 (22234 |44)
and the automaton Ag, shown in Figure 4. Sequence <
12 3 > is legal with respect to state a and sequence < 3 4 >
is legal with respect to state b, while sequences < 1 3 4 >
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and < 2 4 > are not legal with respect to any state of Ax.
Similarly, sequence < 3 4 > is valid with respect to state b
(since b “24” 4 and d is an accept state), however it is not
valid, since it is not valid with respect to the start state a of
Ax. Examples of valid sequences include < 112 2 > and
<234>.

Having established the necessary notions and terminology,
we can now provide an abstract definition of our constrained
pattern mining problem as follows.

e Given: A database of sequences D, a user-specified
minimum support threshold, and a user-specified RE
constraint R (or, equivalently, an automaton Ax).

e Find: All frequent and valid sequential patterns in D.

Thus, our objective is to efficiently mine patterns that are
not only frequent but also belong to the language of se-
quences generated by the RE R. To this end, we have pro-
posed the SPIRIT family of mining algorithms for pushing
user-specified RE constraints to varying degrees inside the
pattern mining process [10].

3.2 The SPIRIT Family of Algorithms

Overview. Figure 5 depicts the basic algorithmic skele-
ton of the SPIRIT family, using an input parameter C to
denote a generic user-specified constraint on the mined pat-
terns. The output of a SPIRIT algorithm is the set of fre-
quent sequences in the database D that satisfy constraint
C. At a high level, our algorithmic framework is similar
in structure to the general Apriori strategy of Agrawal and
Srikant [1]. Basically, SPIRIT algorithms work in passes,
with each pass resulting in the discovery of longer patterns.
In the k" pass, a set of candidate (i.e., potentially frequent
and valid) k-sequences Cj is generated and pruned using
information from earlier passes. A scan over the data is
then made, during which the support for each candidate
sequence in C} is counted and F} is populated with the
frequent k-sequences in Cj,. There are, however, two crucial
differences between the SPIRIT framework and conventional
Apriori-type schemes (like GSP [20]) or the Constrained
APriori (CAP) algorithm [15] for mining associations with
anti-monotone and/or succinct constraints.

1. Relazing C by inducing a weaker (i.e., less restrictive)
constraint C' (Step 1). Intuitively, constraint C' is weaker
than C if every sequence that satisfies C also satisfies C’. The
“strength” of C’ (i.e., how closely it emulates C) essentially
determines the degree to which the user-specified constraint
C is pushed inside the pattern mining computation. The
choice of ¢’ differentiates among the members of the SPIRIT
family and leads to interesting tradeoffs that are discussed
in detail later in this section.

2. Using the relazed constraint C' in the candidate gener-
ation and candidate pruning phases of each pass. SPIRIT
algorithms maintain the set F' of frequent sequences (up to
a given length) that satisfy the relaxed constraint C'. Both
F and C’ are used in:

(a) the candidate generation phase of pass k (Step 6), to
produce an initial set of candidate k-sequences C that
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satisfy C' by appropriately extending or combining se-
quences in F'; and,

(b) the candidate pruning phase of pass k (Steps 8-9), to
delete from Cj all candidate k-sequences containing
at least one subsequence that satisfies C' and does not
appear in F.

Thus, a SPIRIT algorithm maintains the following invari-
ant: at the end of pass k, Fj is exactly the set of all fre-
quent k-sequences that satisfy the constraint C’. Note that
incorporating €' in candidate generation and pruning also
impacts the terminating condition for the repeat loop in
Step 15. Finally, since at the end of the loop, F' contains
frequent patterns satisfying the induced relaxed constraint
C', an additional filtering step may be required (Step 17).

Procedure SPIRIT(D , C)

begin

1. let ' := a constraint weaker (i.e., less restrictive) than C
2. F := F; := frequent items in D that satisfy C’

3. k=2

4. repeat {

5. // candidate generation

6. using C’ and F generate C}, := { potentially frequent

k-sequences that satisfy C’ }

// candidate pruning

let P := {s € C : s has a subsequence t that satisfies
C'andt¢ F }

9. Ck = Ck — P

10.  // candidate counting

11.  scan D counting support for candidate sequences in Cj
12.  Fy := frequent sequences in CY

13. F:=FUF,

14. k:=k+1

15. } until TerminatingCondition(# , C’) holds

16. // enforce the original (stronger) constraint C

17. output sequences in F' that satisfy C

end

o =

Figure 5: SPIRIT constrained pattern mining framework.

Given a set of candidate k-sequences C}, counting support
for the members of C}, (Step 11) can be performed efficiently
by employing specialized search structures, like the hash
tree [20], for organizing the candidates. The implementa-
tion details can be found in [20]. The candidate counting
step is typically the most expensive step of the pattern min-
ing process and its overhead is directly proportional to the
size of Cj [20]. Thus, at an abstract level, the goal of an
efficient pattern mining strategy is to employ the minimum
support requirement and any additional user-specified con-
straints to restrict as much as possible the set of candidate
k-sequences counted during pass k. The SPIRIT framework
strives to achieve this goal by using two different types of
pruning within each pass k.

e Constraint-based pruning using a relaxation C' of the
user-specified constraint C; that is, ensuring that all
candidate k-sequences in C}, satisfy C'. This is accom-
plished by appropriately employing ¢’ and F in the
candidate generation phase (Step 6).
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e Support-based pruning; that is, ensuring that all sub-
sequences of a sequence s in Cj that satisfy C' are
present in the current set of discovered frequent se-
quences F' (Steps 8-9). Note that, even though all
subsequences of s must in fact be frequent, we can
only check the minimum support constraint for subse-
quences that satisfy C’, since only these are retained
in F.

Intuitively, constraint-based pruning tries to restrict Cy by
(partially) enforcing the input constraint C, whereas support-
based pruning tries to restrict C}, by checking the minimum
support constraint for qualifying subsequences. Note that,
given a set of candidates Cj and a relaxation C' of C, the
amount of support-based pruning is maximized when C’ is
anti-monotone [15] (i.e., all subsequences of a sequence sat-
isfying C' are guaranteed to also satisty C'). This is because
support information for all of the subsequences of a candi-
date sequence s in C} can be used to prune it. However,
when C’' is not anti-monotone, the amounts of constraint-
based and support-based pruning achieved vary depending
on the specific choice of C'.

Pushing Non Anti-Monotone Constraints. Consider
the general problem of mining all frequent sequences that
satisty a user-specified constraint C. If C is anti-monotone,
then the most effective way of using C to prune candidates
is to push C “all the way” inside the mining computation.
In the context of the SPIRIT framework, this means using
C as is (rather than some relaxation of C) in the pattern
discovery loop. The optimality of this solution for anti-
monotone C stems from two observations. First, using C
clearly maximizes the amount of constraint-based pruning
since the strongest possible constraint (i.e., C itself) is em-
ployed. Second, since C is anti-monotone, all subsequences
of a frequent candidate k-sequence that survives constraint-
based pruning are guaranteed to be in F (since they also
satisfy C). Thus, using the full strength of an anti-monotone
constraint C maximizes the effectiveness of constraint-based
pruning as well as support-based pruning. Note that this is
exactly the methodology used in the CAP algorithm [15] for
anti-monotone itemset constraints. An additional benefit of
using anti-monotone constraints is that they significantly
simplify the candidate generation and candidate pruning
tasks. More specifically, generating Cj is nothing but an
appropriate “self-join” operation over Fj_; and determin-
ing the pruned set P (Step 8) is simplified by the fact that
all subsequences of candidates are guaranteed to satisfy the
constraint.

When C is not anti-monotone, however, things are not that
clear-cut. A simple solution, suggested by Ng et al. [15] for
itemset constraints, is to take an anti-monotone relaxation
of C and use that relaxation for candidate pruning. Nev-
ertheless, this simple approach may not always be feasible.
For example, our RE constraints for sequences do not admit
any non-trivial anti-monotone relaxations. In such cases, the
degree to which the constraint C is pushed inside the mining
process (i.e., the strength of the (non anti-monotone) relax-
ation C’ used for pruning) impacts the effectiveness of both
constraint-based pruning and support-based pruning in dif-
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ferent ways. More specifically, while increasing the strength
of C' obviously increases the effectiveness of constraint-based
pruning, it can also have a negative effect on support-based
pruning. The reason is that, for any given sequence in Cy
that survives constraint-based pruning, the number of its
subsequences that satisfy the stronger, non anti-monotone
constraint C' may decrease. Again, note that only subse-
quences that satisfy C’' can be used for support-based prun-
ing, since this is the only “state” maintained from previous
passes (in F).

Pushing a non anti-monotone constraint C’ in the pattern
discovery loop can also increase the computational complex-
ity of the candidate generation and pruning tasks. For candi-
date generation, the fact that C’ is not anti-monotone means
that some (or, all) of a candidate’s subsequences may be
absent from F. In some cases, a “brute-force” approach
(based on just C') may be required to generate an initial
set of candidates C}. For candidate pruning, computing the
subsequences of a candidate that satisfy C' may no longer
be trivial, implying additional computational overhead. We
should note, however, that candidate generation and prun-
ing are inexpensive CPU-bound operations that typically
constitute only a small fraction of the overall computational
cost. This fact is also clearly demonstrated in our exper-
imental results [10]. Thus, the major tradeoff that needs
to be considered when choosing a specific ' from among
the spectrum of possible relaxations of C is the extent to
which that choice impacts the effectiveness of constraint-
based and support-based pruning. The objective, of course,
is to strike a reasonable balance between the two different
types of pruning so as to minimize the number of candidates
for which support is actually counted in each pass.

The SPIRIT Algorithms. The four SPIRIT algorithms
for constrained pattern mining are points spanning the en-
tire spectrum of relaxations for the user-specified RE con-
straint C = R. Essentially, the four algorithms represent a
natural progression, with each algorithm pushing a stronger
relaxation of R than its predecessor in the pattern min-
ing loop. The first SPIRIT algorithm, termed SPIRIT(N)
(“N” for Naive), employs the weakest relaxation of R — it
only prunes candidate sequences containing elements that do
not appear in R. The second algorithm, termed SPIRIT(L)
(“L” for Legal), requires every candidate sequence to be le-
gal with respect to some state of Ax. The third algorithm,
termed SPIRIT(V) (“V” for Valid), goes one step further by
filtering out candidate sequences that are not valid with re-
spect to any state of Ar. Finally, the SPIRIT(R) algorithm
(“R” for Regular) essentially pushes R “all the way” inside
the mining process by counting support only for walid can-
didate sequences, i.e., sequences accepted by Ar. Table 1
summarizes the constraint choices for the four members of
the SPIRIT family within the general framework depicted
in Figure 5.

The SPIRIT algorithms employ novel techniques for candi-
date generation and pruning that, essentially, exploit the
structure of the constraint automaton Ax to implement
these steps effectively. In what follows, we provide a brief
overview of SPIRIT(L); the complete details for all SPIRIT
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Algorithm | Relaxed Constraint ' (C=R )
SPIRIT(N) all elements appear in R
SPIRIT(L) legal wrt some state of Ax
SPIRIT(V) valid wrt some state of Ax
SPIRIT(R) valid, ie,C =C=R

Table 1: The four SPIRIT algorithms.

algorithms can be found in [10].

The SPIRIT(L) Algorithm. SPIRIT(L) uses the au-
tomaton Ax to prune from C} candidate k-sequences that
are not legal with respect to any state of Ax. In our descrip-
tion, we use Fj(b) to denote the set of frequent k-sequences
that are legal with respect to state b of Ax.

In the candidate generation step of SPIRIT(L), given a state
b in Ag, we add to C} candidate k-sequences that are legal
with respect to b and have the potential to be frequent.

LEMMA 3.1. Consider a k-sequence s that is legal with
respect to state b in Ag, where b =% ¢ is a transition in Ax.
For s to be frequent, < s1 - - sx—1 > must be in Fj_1(b) and
< $2+-- 8, > must be in Fj_1(c).

Thus, the candidate sequences for state b can be computed
as follows. For every sequence s in Fy_1(b), if b =% ¢ is a
transition in Ax, then for every sequence ¢ in Fj_1(c) such
that sj+1 =t¢; for all 1 < j < k — 2, the candidate sequence
< stp_1 > is added to C. This is basically a join of Fj_1(b)
and Fj_1(c), on the condition that the (k—2)-length suffix of
s € Fy_1(b) matches the (k — 2)-length prefix of ¢ € Fj_1(c)
and b =% ¢ is a transition in Ax.

For the candidate pruning step of SPIRIT(L), note that,
since we only count support for sequences that are legal
with respect to some state of Ax, we can prune s from Cj,
only if we find a legal subsequence of s that is not frequent
(i.e., not in F'). The candidate pruning procedure computes
the set of maximal subsequences of s with length less than &k
that are legal with respect to some state of automaton Ax.
If any of these maximal subsequences is not contained in F,
then s is deleted from C}. We have proposed an novel dy-
namic programmaing algorithm that works off the structure
of the constraint automaton Az to efficiently compute the
maximal legal subsequences of a candidate sequence s; the
details can be found in [10].

Finally, the terminating condition for SPIRIT(L) is that the
set of frequent k-sequences that are legal with respect to the
start state a of A is empty; that is, F(a) is empty.

Overview of Experimental Results. We have conducted
an empirical study of the four SPIRIT algorithms with syn-
thetic and real-life data sets. Note that, in general, RE con-
straints whose automata contain fewer transitions per state,
fewer cycles, and longer paths tend to be more selective,
since they impose more stringent restrictions on the order-
ing of items in the mined patterns. Our expectation is that
for RE constraints that are more selective, constraint-based
pruning will be very effective and the latter SPIRIT algo-
rithms will perform better. On the other hand, less selective
REs increase the importance of good support-based pruning,
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putting algorithms that use the RE constraint too aggres-
sively (like SPIRIT(R)) at a disadvantage. Our experimen-
tal results corroborate our expectations. More specifically,
our findings can be summarized as follows.

1. The SPIRIT(V) algorithm emerges as the overall win-
ner, providing consistently good performance over the

entire range of RE constraints. For certain REs, SPIRIT(V)

is more than an order of magnitude faster than the
“naive” SPIRIT(N) scheme.

2. For highly selective RE constraints, SPIRIT(R) out-
performs the remaining algorithms. However, as the
RE constraint becomes less selective, the number of
candidates generated by SPIRIT(R) explodes and the
algorithm fails to even complete execution for certain
cases (it runs out of virtual memory).

3. The overheads of the candidate generation and prun-
ing phases for the SPIRIT(L) and SPIRIT(V) algo-
rithms are negligible. They typically constitute less
than 1% of the total execution time, even for complex
REs with automata containing large numbers of tran-
sitions, states, and cycles.

Thus, our experimental results have clearly validated our
thesis that intelligent integration of RE constraints into the
mining process can lead to significant performance benefits.
For the complete details, the interested reader is referred to
[10].

4. FUTURE WORK: COST-BASED
CONSTRAINT PUSHING

As already discused in Section 3.2, complex model con-
straints (such as REs for frequent sequential patterns) that
do not subscribe to nice properties, like anti-monotonicity
and succinctness [15], raise a host of new issues and trade-
offs in the design of effective data mining strategies. Our
experience with the SPIRIT algorithms has demonstrated
two important facts. First, even in the case of such “diffi-
cult” user-specified model constraints, there can be a whole
spectrum of possible strategies for exploiting the user’s pref-
erences; these strategies can differ, for example, on how ag-
gressively the given constraints are pushed inside the mining
loop. Second, within the space of all possible constraint-
pushing strategies, there typically is no clear winner over all
constraints and input data sets; instead, the winning strat-
egy depends on a number of factors relating to the specific
problem instance, such as the “selectivity” of the constraint
and the relevant statistical characteristics of the input data.
Furthermore, the best strategy may even vary across differ-
ent stages of the model-extraction algorithm; for example,
it is possible that more aggressive constraint-based pruning
(e.g., SPIRIT(R)) can give better results if applied only in
later iterations of the Apriori loop.

The above scenario is obviously reminiscent of traditional
query optimization in relational database systems [5; 18],
with the constraint-based mining strategies essentially cor-
responding to “query execution plans” for ad-hoc mining

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

queries. We believe that a principled methodology for ex-
ploring the various performance issues and tradeoffs that
arise in constraint-based, ad-hoc data mining should em-
ploy a cost-based approach, similar to that used in rela-
tional query optimizers. Of course, the increased complexity
of model-mining algorithms and their corresponding con-
straints compared to simple relational algebra operations
implies that cost-based optimization issues need to be fun-
damentally re-thought in the context of ad-hoc data min-
ing. For example, the types of statistical synopses (e.g.,
histograms) of the underlying data that are needed to make
effective execution-plan decisions have to be carefully de-
signed based on the specific data-mining strategy and form
of constraint at hand. We are currently investigating the de-
sign of cost-based approaches for integrating user constraints
in various data-mining tasks.

5. CONCLUSIONS

Exploiting user-defined model constraints during the min-
ing process can help users get exactly what they want from
a data mining system, while ensuring system performance
that is commensurate with the level of user focus. Attaining
such performance, however, is not straightforward and, typ-
ically, requires the design of novel data mining algorithms
that make effective use of the model constraints. This pa-
per has provided an overview of our recent work on scal-
able, constraint-based algorithms for (1) decision tree con-
struction with size and accuracy constraints for the desired
model, and (2) sequential pattern extraction in the presence
of RE constraints for the target patterns. By “pushing” the
model constraints inside the mining process, our algorithms
give mining users exactly the models that they are looking
for, while achieving performance speedups that often exceed
one order of magnitude. Further, our work on sequential
pattern mining has uncovered some valuable insights into
the tradeoffs that arise when complex constraints that do
not subscribe to nice properties (like anti-monotonicity) are
integrated into the mining process. Our thesis is that, in
general, a cost-based approach (similar to that employed in
conventional query optimizers) is needed to explore these
tradeoffs in a principled manner and produce effective ex-
ecution plans for ad-hoc mining queries. We believe that
the design of such approaches can provide fertile ground for
innovative data mining research in coming years.
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