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ABSTRACT

Mining frequent patterns has been a focused topic in data
mining research in recent years, with the development of nu-
merous interesting algorithms for mining association, cor-
relation, causality, sequential patterns, partial periodicity,
constraint-based frequent pattern mining, associative classi-
fication, emerging patterns, etc. Most of the previous stud-
ies adopt an Apriori-like, candidate generation-and-test ap-
proach. However, based on our analysis, candidate gener-
ation and test may still be expensive, especially when en-
countering long and numerous patterns.

A new methodology, called frequent pattern growth,
which mines frequent patterns without candidate genera-
tion, has been developed. The method adopts a divide-and-
conquer philosophy to project and partition databases based
on the currently discovered frequent patterns and grow such
patterns to longer ones in the projected databases. More-
over, efficient data structures have been developed for ef-
fective database compression and fast in-memory traversal.
Such a methodology may eliminate or substantially reduce
the number of candidate sets to be generated and also re-
duce the size of the database to be iteratively examined,
and, therefore, lead to high performance.

In this paper, we provide an overview of this approach and
examine its methodology and implications for mining sev-
eral kinds of frequent patterns, including association, fre-
quent, closed itemsets, max-patterns, sequential patterns,
and constraint-based mining of frequent patterns. We show
that frequent pattern growth is efficient at mining large data-
bases and its further development may lead to scalable min-
ing of many other kinds of patterns as well.
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1. INTRODUCTION

Since the introduction of association mining in [2], there
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have been many studies on efficient and scalable frequent
pattern mining algorithms. A milestone in these studies
is the development of an Apriori-based, level-wise mining
method for associations [3; 19], which has sparked the de-
velopment of various kinds of Apriori-like association min-
ing algorithms, as well as its extensions to mining correlation
[8], causality [27], sequential patterns [4], episodes [20], max-
patterns [5], constraint-based mining [29; 21; 17; 12], asso-
ciative classification [18], cyclic association rules [22], ratio
rules [16], iceberg queries and iceberg cubes [10; 7], par-
tial periodicity [13], emerging patterns [9], and many other
patterns.

There 1s an important, common ground among all these
methods developed: the use of an anti-monotone Apriori
property of frequent patterns [3]: if any length-k pattern is
not frequent in the database, none of its length-(k+1) super-
patterns can be frequent. This property leads to the powerful
pruning of the set of itemsets to be examined in the search
for longer frequent patterns based on the existing ones.
Besides applying the Apriori property, most of the devel-
oped methods adopt a level-wise, candidate generation-and-
test approach, which scans the database multiple times (al-
though there have been many techniques developed for re-
ducing the number of database scans). The first scan finds
all of the length-1 frequent patterns. The k-th (for k > 1)
scan starts with a seed set of length-(k — 1) frequent pat-
terns found in the previous pass and generates new poten-
tial length-k patterns, called candidate patterns. The k-th
scan of the database finds the support of every length k can-
didate pattern. The candidates which pass the minimum
support threshold are identified as frequent patterns and
become the seed set for the next pass. The computation
terminates when there is no frequent pattern found or there
is no candidate pattern that can be generated in any pass.
The candidate generation approach achieves good perfor-
mance by reducing the number of candidates to be gener-
ated. However, when the minimum support threshold is
low or the length of the patterns to be generated is long,
the candidate generation-based algorithm may still bear the
following non-trivial costs, independent of detailed imple-
mentation techniques.

1. The number of candidates to be generated may still
be huge, especially when the length of the patterns to
be generated is long. For example, to generate one fre-
quent pattern of length 100, such as {a1, a2, ... ,a100},
the number of candidates that has to be generated will
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2. Each scan of the database examines the entire database
against the whole set of current candidates, which is
quite costly when the database is large and the number
of candidates to be examined is numerous.

To overcome this difficulty, a new approach, called frequent
pattern growth, has been developed, in a series of studies,
such as [15; 25; 23; 14; 24; 26], which adopts a divide-and-
conquer methodology and mines frequent patterns without
candidate generation. The approach has several distinct fea-
tures:

1. Instead of generating a large number of candidates,
the method preserves (in some compressed forms) the
essential groupings of the original data elements for
mining. Then the analysis is focused on counting the
frequency of the relevant data sets instead of candidate
sets.

2. Instead of scanning the entire database to match against
the whole corresponding set of candidates in each pass,
the method partitions the data set to be examined as
well as the set of patterns to be examined by database
projection. Such a divide-and-conquer methodology
substantially reduces the search space and leads to
high performance.

3. With the growing capacity of main memory and the
substantial reduction of database size by database pro-
jection as well as the space needed for manipulating
large sets of candidates, a substantial portion of data
can be put into main memory for mining. New data
structures and methods, such as FP-tree and pseudo-
projection (for mining sequential patterns), have been

developed for data compression and pointer-based traver-

sal. The performance studies have shown the effective-
ness of such techniques.

A few pieces of work have contributed to the development
of the frequent pattern-growth methodology, as illustrated
below.

The TreeProjection method [1] proposes a database projec-
tion technique which explores the projected databases asso-
ciated with different frequent itemsets. The FP-growth algo-
rithm [15] performs database projection when the database
size 1s huge and then constructs a compressed data struc-
ture, FP-tree, when the compressed tree can fit in main
memory. The remaining mining will be focused on the re-
cursively generated, projected FP-trees. Besides mining fre-
quent itemsets, the FP-tree structure can be used for mining
frequent closed itemsets, which is presented in the CLOSET
algorithm [25].

The frequent pattern-growth methodology influences constraint-

based mining of frequent itemsets as well. The constraint-
pushing techniques developed for Apriori-based mining [21]
can be applied to pattern growth mining. In addition, some
complex kinds of constraints, such as convertible constraints,
which cannot be pushed deep into the mining process by
Apriori, can be done so with frequent pattern growth [24],
due to the facts that (1) pattern growth only needs to exam-
ine part of the database (the projected one), and (2) data
can be organized in a structured way to facilitate the con-
trolled growth of frequent patterns.
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Similar divide-and-conquer ideas but different projection tech-
niques have been developed for mining sequential patterns,
which are presented in two algorithms, FreeSpan [14] and
PrefixSpan [26]. The performance study shows that both
methods outperform the classical Apriori-based sequential
pattern mining algorithm GSP [28], and PrefixSpan has con-
siderably better performance than FreeSpan.

In this paper, we provide an overview of several recently de-
veloped frequent pattern growth mining methods and dis-
cuss their implications. The remaining of the paper is orga-
nized as follows. In Section 2, we examine the FP-growth
method for mining frequent itemsets and also mention the
CLOSET method for mining frequent closed itemsets. In
Section 3, we look at the impact of FP-growth to constraint-
based mining of frequent patterns and the handling of con-
vertible constraints. In Section 4, we introduce two pattern-
growth-based methods for mining sequential patterns: FreeSpan
[14] and PrefixSpan [26]. In Section 5, we discuss the po-
tential extensions of pattern-growth methods and conclude
our study.

2. FP-GROWTH: PATTERN GROWTHFOR
MINING FREQUENT ITEMSETS

As shown by many researchers [2; 3], mining frequent item-
sets represents the core of mining association rules, correla-
tions, and many other patterns.

Let a transaction database T'D B consist of a set of transac-
tions in the form of T' = (tid, X') where tid is a transaction-
id and X an itemset (i.e., a set of items). A transaction
T is said to contain itemset Y if and only if Y C X. The
support of an itemset W in TDB, denoted as sup(W), is
the number of transactions in T'DB containing W. Given
a user-specified minimum support threshold, min_sup, W is
frequent if and only if sup(W) > min_sup. The problem of
mining frequent itemsets is to find the complete set of fre-
quent ittemsets in a transaction database TDB w.r.t. given
support threshold min_sup.

Here we examine how one can develop a pattern growth
method, FP-growth [15], for efficient mining of frequent
itemsets in large databases. FP-growth first performs a fre-
quent, item-based database projection when the database is
large and then switches to main-memory-based mining by
constructing a compact data structure, called FP-tree, and
transforming mining database into mining this compact tree.
We first show how FP-tree be constructed from a database.

Example 1. (FP-tree) Let the transaction database, DB,
be (the first two columns of) Table 1 and the minimum
support threshold be 3.

[ tid ] Ttemset | (Ordered) Frequent Ttems |
100 f7a7c7d7g7i7m7p f7c7a7m7p
200 a,bye, f,l,m,o0 ficoa,b,m
300 b fihigo fib
400 b,c,k,s,p c,byp

500 a7f7c767l7p7m7n f7c7a7m7p

Table 1: The transaction database T'DB.

First, a scan of DB derives a list of frequent items, {(f :
4),(c :4),(a:3),(b:3),(m:3),(p:3)), (the number after
“” indicates the support), and with items ordered in fre-
quency descending order. This ordering is important since
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Figure 1: FP-tree for transaction database in Table 1.

each path of a tree will follow this order. For convenience of
later discussions, the frequent items in each transaction are
listed in this ordering in the rightmost column of Table 1.
Second, the root of a tree, labeled with “null” is created.
Scan the DB the second time. The scan of the first trans-
action leads to the construction of the first branch of the
tree: ((f:1),(c:1),(a:1),(m:1),(p:1)). Notice that the
branch is not ordered in {f,a,c,m,p) as in the transaction
but is ordered according to the order in the list of frequent
items. For the second transaction, since its (ordered) fre-
quent item list {f, ¢, a,b, m) shares a common prefix (f,c, a)
with the existing path (f,c,a, m, p), the count of each node
along the prefix is incremented by 1, and one new node
(b: 1) is created and linked as a child of (a : 2) and another
new node (m : 1) is created and linked as the child of (b : 1).
Remaining transactions can be inserted similarly.

To facilitate tree traversal, an item header table is built, in
which each item points, via a head of node-link, to its first
occurrence in the tree. Nodes with the same item-name
are linked in sequence via node-links. After scanning all
transactions in D B, the tree with the associated node-links
is shown in Figure 1. a

The FP-tree built in Example 2 has some nice properties as
follows: (1) FP-tree contains complete information of TDB
w.r.t. frequent itemset mining: every transaction in T'DB
is mapped onto one path in the FP-tree, and the frequent
itemset information is completely stored in the tree; (2) FP-
tree is a highly compact structure: since there are often a lot
of sharing of frequent items among transactions, the size of
the tree is usually much smaller than its original database;
and (3) there is a node-link property: for every frequent item
z, all transactions containing x can be obtained by following
2’s node-links starting from z’s head in the FP-tree header
table.

Based on this compact structure, FP-growth mines the com-
plete set of frequent itemsets as follows.

Example 2. (FP-growth) Let us examine the mining pro-
cess based on the constructed FP-tree (Figure 1).
According to the list of frequent items, the complete set
of frequent itemsets can be divided into 6 subsets without
overlap: (1) frequent itemsets having item p; (2) the ones
having item m but no p; ... ; and (6) the one having only
item f. FP-growth finds these subsets of frequent itemsets
as follows.

Based on node-link property, we collect all the transactions
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that p participates by starting from p’s head (in the header
table) and following p’s node-links.

Item p derives a frequent itemset (p : 3) and two paths in the
FP-tree: (f:4,c:3,a:3,m:2,p:2)and (c:1,b:1,p:1).
The first path indicates that string “(f,c,a, m,p)” appears
twice in the database. Notice although string (f,c,a) ap-
pears three times and (f) itself appears even four times,
they only appear twice together with p. Thus to study
which strings appear together with p, only p’s prefix path
(fecam : 2) counts. Similarly, the second path indicates
string “(c,b, p)” appears once in the set of transactions in
TDB, or p’s prefix path is (c¢b : 1). These two prefix paths of
p, {(feam : 2), (¢b:1)}”, form p’s sub-database, which is
called p’s conditional database (i.e., the sub-database under
the condition of p’s existence). Construction of an FP-tree
on this conditional sub-database (which is called p’s con-
ditional FP-tree) leads to only one branch (¢ : 3). Hence
only one frequent itemset (cp: 3) is derived. The search for
frequent itemsets having p terminates.

For item m, it derives a frequent itemset (m : 3) and two
paths (f:4,c¢:3,a:3,m:2) and (f : 4,¢:3,a:3,b:1,m:
1). Notice p appears together with m as well, however, there
is no need to include p here in the analysis since any frequent
itemsets involving p has been analyzed in the previous exam-
ination of p. Similar to the above analysis, m’s conditional
sub-database is, {(fca : 2), (feab : 1)}. Constructing an
FP-tree on it, we derive m’s conditional FP-tree, (fca : 3),
a single frequent itemset path.

Since m’s conditional FP-tree, (fca : 3), has a single branch,
instead of recursively constructing its conditional FP-trees,
one can simply enumerate all the combinations of its com-
ponents, i.e., {(a : 3), (¢ : 3), (f : 3), (ca : 3), (fa : 3),
(fea : 3), (fe : 3)}. Such simple pattern enumeration for
single-path FP-trees has been proven truly useful at reduc-
ing mining efforts.

item | conditional sub-database | conditional FP-tree
P {(fcam :2), (cb: 1)} {(c:3)}p

m {(fca:2), (fcab:1)} {(fca:3)}|m

b {(fea:1),(f:1),(c: 1)} []

a {(fc:3)} {(fc:3)}a

c {(f:3)} {(f:3)}e

f [ 0

Table 2: Conditional (sub)-databases and conditional FP-
trees of frequent 1-itemsets

Similarly, the remaining frequent itemsets can be mined by
constructing corresponding conditional sub-databases and
perform mining on them, respectively. The conditional sub-
databases and the conditional FP-trees generated are sum-
marized in Table 2. a

When the database is too big to make its FP-tree fit in
memory, the database can be projected into its conditional
sub-databases (without constructing disk-based FP-trees).
Two methods can be used for the projection of a database
into its conditional sub-databases: parallel projection and
partition projection. The former projects each transaction
into all of its projected databases in one scan, whereas the
latter projects each transaction only to its first projected
database (according to the ordering of items). The former
facilitates parallel processing but requires large disk space
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to store all of the projected databases, whereas the latter
ensures that the additional disk space required is no more
than the original database but it needs additional projec-
tions of its (projected) transactions to subsequent projected
databases in the later processing.

After one or a few rounds of projections, the corresponding
conditional FP-trees should be able to fit in memory. Then
a memory-based FP-tree can be constructed for fast mining.
The FP-growth algorithm is presented in [15]. Tts perfor-
mance analysis shows that the FP-growth mining of both
long and short frequent itemsets is efficient and scalable.
It is about an order of magnitude faster than Apriori [3]
and other candidate generation-based algorithms, and is
also faster than TreeProjection, a projection-based algo-
rithm proposed in [1].

In comparison with the candidate generation-based algo-
rithms, FP-growth has the following advantages: (1) FP-
tree is highly compact, usually substantially smaller than
the original database, and thus saves the costly database
scans in the subsequent mining process. (2) It avoids costly
candidate sets generation and test by successively concate-
nating frequent 1-itemsets found in the (conditional) FP-
trees: It never generates any combinations of new candidate
sets which are not in the database because the itemset in
any transaction is always encoded in the corresponding path
of the FP-trees. In this context, the mining methodology is
not Apriori-like (restricted) generation-and-test but frequent
pattern (fragment) growth only. The major operations of
mining are count accumulation and prefix path count adjust-
ment, which are usually much less costly than candidate gen-
eration and itemset matching operations performed in most
Apriori-like algorithms. (3) It applies a partitioning-based
divide-and-conquer method which dramatically reduces the
size of the subsequent conditional sub-databases and condi-
tional FP-trees. Several other optimization techniques, in-
cluding ordering of frequent items, and employing the least
frequent events as suffix, also contribute to the efficiency of
the method.

Besides mining frequent itemsets, an extension of the FP-
growth method, called CLOSET [25], can be used to mine
frequent closed itemsets and max-patterns, where a frequent
closed itemset is a frequent itemset, ¢, where there is no
proper superset of ¢ sharing the same support count with ¢,
and a maz-pattern is a frequent pattern, p, such that any
proper superpattern of p is not frequent. Max-patterns and
frequent closed itemset can be used to reduce the number of
frequent itemsets and association rules generated at associ-
ation mining.

By frequent pattern growth, one can also mine closed fre-
quent itemsets and max-patterns, using the FP-tree struc-
ture. Moreover, a single prefix-path compression technique
can be developed for compressing FP-trees or conditional
FP-trees that contain single prefix paths. This will further
enhance the performance and reduce the efforts of redun-
dancy checking at mining closed frequent itemsets and max-
patterns.

3. PUSHING MORE CONSTRAINTS IN
PATTERN-GROWTH MINING

Frequent pattern mining often generates a large number of
frequent itemsets and rules, which reduces not only the effi-
ciency but also the effectiveness of mining since users have
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to sift through a large number of mined rules to find useful
ones.

Recent work has highlighted the importance of the paradigm
of constraint-based mining: the user is allowed to express
his focus in mining, by means of a rich class of constraints
that capture application semantics. Besides allowing user
exploration and control, the paradigm allows many of these
constraints to be pushed deep inside mining, thus pruning
the search space and achieving high performance.

Previous studies [21; 17; 6; 12] have identified three classes of
constraints, anti-monotone, monotone, and succinct, which
can be pushed deep in frequent itemset mining. While these
cover a large class of useful constraints, many other useful
and natural constraints remain. For example, consider the
constraints avg(.S) 8 v, and sum(S) 8 v (8 € {>,<}). The
first is neither anti-monotone, nor monotone, nor succinct.
The second is anti-monotone when 6 is < and all items have
non-negative values. But if S can contain items of arbitrary
values, the constraint is rather like the first one. This means
these constraints are hard to optimize.

With the development of frequent pattern growth method,
databases can be projected and partitioned in an organized
way, as well as the patterns to be searched for. Thus some
constraints which are hard to optimize under the Apriori
mining framework can be optimized with the frequent pat-
tern growth method. Let’s examine one example.

Example 3. Let Table 3 be our transaction database T,
with a set of items I = {a,b,c,d, e, f,g,h}. Let the support
threshold be min_support = 2. Also, let each item have
an attribute value (such as profit), with the concrete value
shown in Table 4.

| Transaction 1D | ITtems in transaction |

10 a,b,c,d, f
20 b7c7d7f7g7h
30 a,c,d,e, f
40 c767f7g

Table 3: The transaction database 7 in Example 3

[Teem [a [b[ c [d] e [f[s] h |
[Value [40 [0 [ -20]10] —30 [ 3020 ] —10 |

Table 4: The profit of each item in Example 3.

The constraint Coyg = avg(S) > 25 is not anti-monotone
(nor monotone, nor succinct). For example, avg(df) = (10+
30)/2 < 25, violates the constraint. However, upon adding
one more item a, avg(adf) = (40 + 10 + 30)/3 > 25, adf
satisfies Cuyg. 0

This example shows that a constraint like avg(S) > v can-
not be pushed deep into the Apriori mining algorithm be-
cause the subsets (supersets) of a valid itemset could well
be invalid and vice versa. Let us examine how to push such
a constraint deep into the mining process in the frequent
pattern growth mining.

Example 4. With the same minimum support threshold
over transaction database 7 in Table 3, one can list items
in value descending order R: (a(40), f(30), g(20), d(10),
b(0), h(—10), c(—20), e(—30)).
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A database can be then partitioned according to the ordered
frequent items. With the frequent pattern growth mining,
the constraint C' can be pushed deep into the mining process,
as shown in Figure 2.

Tran. DB
afdbc
fgdbc
afdce
fghce
freq. items: a, f, g, d, b,c, e
C(a)=true
C(f)=true R: a-f-g-d-b-c-e
C(g)=false
aproj. DB f-proj. DB
fdbc dbc
fdce gdbc
freq. items: f, d, c dee
C(af)=true gce
C(ad)=true freg. items: g,d, b, c, e
C(ac)=false C(fg)=true
C(fd)=false
de z dbc
ce
freq.items: d, ¢ freq.items: ¢ “freq. items: ¢
C(afd)=true C(adc)=false C(fgc)=false
C(afc)=false

Figure 2: Mining frequent itemsets satisfying constraint
avg(S) > 25.

By scanning 7 once, we find support count for every item.
Since h appears in only one transaction, it is an infrequent
item and is thus dropped without further consideration. The
set of frequent 1-itemsets is (a, f, g, d, b, ¢, €}, listed in order
R. Among them, only a and f satisfy the constraint. The
fact that itemset g does not satisfy the constraint implies
that none of any 1-itemsets after g in order R can satisfy the
constraint avg. Similarly, itemsets having g, d, b, ¢ or e as
prefix cannot satisfy the constraint. Thus, the set of frequent
itemsets satisfying the constraint can be partitioned into two
subsets:

1. The ones having itemset a as a prefix w.r.t. R, i.e.,
those containing item a; and

2. The ones having itemset f as a prefix w.r.t. R, i.e.,
those containing item f but no a.

They form two projected databases [15] which can be mined
with the constraint C' pushed in. We examine the first one
only since the second is similar.

Since a is a frequent itemset satisfying the constraint, the
frequent itemsets having a as a proper prefix can be found in
a-projected database (the subset of transactions containing
a). Tt contains two transactions: bedf and cdef. Since items
b and e is infrequent within this projected database, neither
ab nor ae can be frequent. So, they are pruned. The frequent
items in the a-projected database is f, d, ¢, listed in the order
R. Since ac does not satisfy the constraint, there is no need
to create an ac-projected database.
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To check what can be mined in the a-projected database
with af and ad, as prefix, respectively, we need to construct
the two projected databases and mine them. This process
is similar to the mining of a-projected databases.
The af-projected database contains two frequent items d and
¢, and only afd satisfy the constraint. Moreover, since a fdc
does not satisfies the constraint, the process in this branch
is complete. Since afc violates the constraint, there is no
need to construct afc-projected database. The ad-projected
database contains one frequent item ¢, but adec does not sat-
isfy the constraint. Therefore, the set of frequent itemsets
satisfying the constraint and having a as prefix contains a,
af, afd, and ad.
In summary, the complete set of frequent itemsets satisfy-
ing the constraint contains 6 itemsets: a, f, af, ad, afd,
fg. The method with ordered itemsets and frequent pat-
tern growth generates and tests only a small set of itemsets.
O

This example shows that by proper ordering of itemsets,
frequent pattern growth method may push some tough con-
straints (called convertible constraints) deeper than the Apri-
ori methods. A systematic classification of such constraints
and a study of how to push them into the mining process
are in [23; 24].

4. PREFIXSPAN: MINING SEQUENTIAL
PATTERNS BY PATTERN GROWTH

Sequential pattern mining, which discovers frequent subse-
quences as patterns in a sequence database, is an impor-
tant data mining problem with broad applications, includ-
ing the analyses of customer purchase behavior, Web access
patterns, scientific experiments, disease treatments, natural
disasters, DNA sequences, and so on.
A sequence database S is a set of tuples (sid, s), where sid
is a sequence_id and s is a sequence (i.e., an ordered list
of itemsets). A tuple (sid, s) is said to contain a sequence
a, if a 1s a subsequence of s, i.e., a C s. The support of a
sequence « in a sequence database S is the number of tuples
in the database containing «. Given a positive integer ¢ as
the support threshold, a sequence « is called a sequential
pattern in sequence database S if the sequence is contained
by at least £ tuples in the database, i.e., supports(a) > €.
A sequential pattern with length [ is called an l-pattern.
Given a sequence database and a min_support threshold, the
problem of sequential pattern mining is to find the complete
set of sequential patterns in the database.
Sequential pattern mining is more challenging than mining
frequent itemsets. Sequences allow multiple occurrences of
items and combination of items into itemsets, which may
lead to a combination explosion. For example, using items
a and b, there are only three possible itemsets: a, b and ab.
However, even the length of sequences is limited to 3, there
are 12 possible sequences: (aaa), (aab), ..., (bbb), {(ab)a),
., {b(ab)).
Sequential patterns also have the Aprior: property: every
non-empty sub-sequence of a sequential pattern is a sequen-
tial pattern. A typical sequential pattern mining algorithm,
GSP [28], is based on this Aprior: property to reduce search
space. However, the method bears similar non-trivial, in-
herent costs as to Apriori in mining frequent itemsets.
Following the similar philosophy of frequent pattern growth,
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two algorithms, FreeSpan [14] and PrefixSpan [26], are de-
veloped for pattern growth-based sequential pattern min-
ing. FreeSpan mines sequential patterns by projecting the
sequence database based on any frequent subsequences and
growing subsequences in any position; whereas PrefixSpan
does it by projecting the database based on only the frequent
prefix subsequences and adding postfixes in the growth. Both
methods find the complete set of sequential patterns but the
latter is more efficient since it involves less database projec-
tions and less subsequence combinations to be examined.
This analysis has also been verified by the performance re-
sults, and thus we examine only PrefixSpan using an exam-
ple.

Example 5. (PrefixSpan) Suppose we want to mine se-
quential patterns in a sequence database S, shown in Table
5, with the support threshold set to 2. PrefixSpan works as
follows.

| Sequence.id | Sequence |
10 (a(abc)(ac)d(cf))
20 (ad)c(be)(ae))
30 ((ef)(ab)(df)cb)
40 (eg(af)cbc)

Table 5: A sequence database

First, we find length-1 sequential patterns by scanning .S once.
This derives the set of frequent items in sequences, i.e., the
set of length-1 sequential patterns: {({a) : 4), ((b) : 4),
() 4), ({d) :3), ({€) : 3), and ((F) : 3)}.

Then, the search space can be partitioned into the following
six subsets according to the six prefixes: (1) the ones with pre-
fix (a); ... ; and (6) the ones with prefix (f). The subsets
of sequential patterns can be mined by constructing corre-
sponding projected databasesand mine each recursively. The
projected databases as well as sequential patterns found in
them are listed in Table 6, and the mining process is ex-
plained as follows.

The sequential patterns with prefix {(a) are mined in the
(prefix) (a)-projected database. It is the collection that con-
tains only those subsequences prefixed with the first occur-
rence of {a). For example, in sequence {(ef)(ab)(df)cb), only
the subsequence ((_b)(df)cb) should count. Notice that (_b)
means that the last element in the prefix, which is a, to-
gether with b, form one element (i.e., occurring together).
Thus the (a)-projected database consists of four postfix se-
quences: ((abc)(ac)d(cf)), {(d)c(be)(ae)), {(-b)(df)cb) and
((=f)cbc). By scanning (a)-projected database once, all the
length-2 sequential patterns prefixed with (a) can be found.
They are: ({aa) : 2), ({ab) : 4), ({(ab)) : 2), ({ac) : 4),
({ad) : 2), and ({af) : 2).

Recursively, all sequential patterns with prefix (a) can be
partitioned into 6 subsets: (1) that prefixed with (aa), (2)
that with (ab), ..., and finally, (6) that with {(af). These
subsets can be mined by constructing respective projected
databases and mining each recursively.

For example, the (aa)-projected database consists of only
one non-empty (postfix) subsequences prefixed with (aa):
((cbe)(ac)d(cf)). Since there is no hope to generate any
frequent subsequence from a single sequence, the process-
ing of (aa)-projected database terminates. Similarly, the
(ab)-projected database consists of three postfix sequences:

((ce)(ac)d(cf)), {(-c)a), and (c). Recursively mining it re-
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turns four sequential patterns: {(c)), ((-c)a), {(a), and {c)
(i-e., {a(bec)), {a(bc)a), (aba), and {abc).)

Using the same method, sequential patterns with prefix (b),
(¢}, {d), {(e) and (f), can be mined from the corresponding
projected databases respectively. The projected databases
as well as the sequential patterns found are shown in Table
6. 0

The example shows that PrefixSpan examines only the pre-
fix subsequences and projects only their corresponding post-
fix subsequences into projected databases, and in each pro-
jected database, sequential patterns are grown by exploring
only local frequent patterns.

To further improve mining efficiency, two kinds of optimiza-
tions are explored [26]: (1) pseudo-projection, and (2) bi-
level projection. Pseudo-projection is based on the follow-
ing idea: When the database can be held in main memory,
instead of constructing a physical projection by collecting
all the postfixes, one can use pointers referring to the se-
quences in the database as a pseudo-projection. Every pro-
jection consists of two pieces of information: pointer to the
sequence in database and offset of the postfix in the se-
quence. This avoids physically copying postfixes. Thus, it
is efficient in terms of both running time and space. How-
ever, it is not efficient if the pseudo-projection is used for
disk-based accessing since random access of disk space is
very costly. Therefore, when the sequence database cannot
be held in main memory, a bi-level projection method is ex-
plored, which projects databases not at every level but at
every two levels. In comparison with level-by-level projec-
tion, bi-level projection reduces the cost of database projec-
tion and leads to improved performance when the database
is huge and the support threshold is low.

A systematic performance study in [26] shows that PrefixS-
pan with these two optimizations is efficient and scalable.
It mines the complete set of patterns and runs consider-
ably faster than both Apriori-based GSP algorithm [28] and
FreeSpan [14].

5. DISCUSSIONS AND CONCLUSIONS

We have presented a pattern-growth methodology for min-
ing several kinds of frequent patterns in large databases.
Our performance study shows that the algorithms derived
from the pattern-growth methodology are more efficient and
scalable than many other frequent pattern mining methods.
According to our analysis, the high performance of the pattern-
growth methodology is due to the following factors: (1) it
adopts a divide-and-conquer strategy to project and parti-
tion a large database recursively into a set of progressively
smaller ones, and the patterns to be searched for in each
corresponding projected database are also reduced substan-
tially; (2) it integrates disk-based database projection algo-
rithms with main memory-based data structures and fast
in-memory traversal algorithms, which can be well-tuned to
achieve combined high performance by swapping disk-based
algorithm into memory-based one when the projected and
compressed data set can fit in memory; and (3) it makes
good use of the Apriori property implicitly as well as other
properties, such as the single tree-path property, but avoids
generating a large number of candidates, which ensures each
counting and testing is on the real data sets rather than on
the potential candidate sets. These several techniques com-
bined lead to high performance mining algorithms.

Volume 2, Issue 2 - page 19



[ Prefix | Projected (postfix) database

Sequential patterns |

(a} | {(abe)(ac)d(cf)), ((d)e(be)(ac)), ((-b)(df)ch), | (a}, {aa), {ab), {a(be)), (a(bc)a), (aba), {abc), {(ab)),
((-f)cbe) g((zll;)cg,é(abzd?>((ab)f>, ((ab)dc), (ac), (aca), {acb), {acc),

by | {(co)(ac)d(ef)), ((<c)(ae)), ((df)cb), {c) (b), (ba), (be}), ((be)), {(be)a), (bd), (bde), (bf)

(e) | {(ac)d(cf)), {(be)(ae)), {b), {bc) (c), {ca), (cb), {cc)

(d) | {{ef)), (e(be)(ae)), {(-f)ecb) (d), (db), {dc), {dcb)

TN, {(ajehe) (&Y, {ea) (cab), {eac), Geach), (e, (ebey, Geel, (eeb, (o7,

(efb), {efc), (efcb).
T @, ) Y, (70, <75, (el Teh)

Table 6: Projected databases and sequential patterns

There are many issues which still need to be studied in
depth. One direction is to develop techniques to further im-
prove the mining efficiency, such as materialization and in-
cremental computation of FP-trees or projected databases,
parallel and distributed pattern-growth mining, reduction
of the cost of projection, and so on. Another direction is
to expand the scope of pattern-growth mining towards min-
ing more sophisticated patterns, such as mining multiple
dimensional and/or multiple level associations or sequential
patterns, mining correlations and causal structures, mining
partial matching patterns (such as DNA sequence patterns
which contain insertions, deletions, and mutations), min-
ing partial periodicity, associative classification, constraint-
based mining of sequential and other patterns [11], and
many other tasks. Many of these mining tasks have been
studied in the context of Apriori-based mining. However,
a re-examination of these mining tasks in the framework
of frequent pattern growth may lead to the development of
more efficient mining algorithms as well as potentially new
methods due to database partition and the structural nature
of the pattern-growth approach.

6.
(1]

10]

(11]
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