The Segment Support Map:
Scalable Mining of Frequent Itemsets

Laks V.S. Lakshmanan
Concordia University
and IIT — Bombay

laks@cs.concordia.ca

ABSTRACT

Since its introduction, frequent set mining has been gener-
alized to many forms, including online mining with Carma,
and constrained mining with CAP. Regardless, scalability is
always an important aspect of the development. In this
paper, we propose a novel structure called segment sup-
port map to help mining of frequent itemsets of the various
forms. A light-weight structure, the segment support map
improves the performance of frequent-set mining algorithms
by: (i) obtaining sharper bounds on the support of itemsets,
and/or (ii) better exploiting properties of constraints. Our
experimental results show the effectiveness of the segment
support map.

Keywords

Scalable data mining, association rule, frequent sets

1. INTRODUCTION

Since its introduction [1], the problem of mining associa-
tion rules, and the more general problem of finding frequent
sets, from large databases has been the subject of numer-
ous studies. Those studies can be broadly divided into two
categories:

1. Scalability: The central question considered is how
to compute the conventional association rules as ef-
ficiently as possible. Studies in this category can be
further classified into three subgroups: (i) fast algo-
rithms based on the levelwise Apriori framework [3;
11]; (ii) partitioning [17; 19], and sampling [22]; (iii) in-
cremental updating and parallel algorithms [2; 6; 8;
16].

2. Functionality: The central question considered is what
(kind of rules) to compute. Studies in this category can
be further classified into two “generations”. Studies in
the first generation basically considered the data min-
ing exercise in isolation. Examples include multi-level
association rules [9], quantitative and multi-dimensional

*Person handling correspondence: Raymond T. Ng, De-
partment of Computer Science, The University of British
Columbia, 2366 Main Mall, Vancouver, BC, Canada V6T
1Z4; Phone: (604)822-2394; Fax: (604)822-5485.

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

Carson Kai-Sang Leung
The University of
British Columbia

kleung@cs.ubc.ca

*

Raymond T. Ng
The University of
British Columbia

rng@cs.ubc.ca

rules [7; 14; 21], correlations and causal structures [5;
20], mining long patterns [4], and ratio rules [12]).

Studies in the second generation have explored how
data mining can best interact with other key compo-
nents in the broader picture of knowledge discovery.
One key component is the DBMS, and some studies
(e.g., the integration of association rule mining with
relational DBMS [18], query flocks [23]) explored how
association rule mining can handshake with the DBMS
most effectively. Another component, which is ar-
guably even more important when it comes to knowl-
edge discovery, is the human user. Studies of this kind
try to provide much better support for: (i) user inter-
action (e.g., dynamically change the parameters mid-
stream); and (ii) user guidance and focus (e.g., limit
the computation to what interests the user). With
respect to user interaction, Hidber [10] proposed a
“continuous/online” mining algorithm, called Carma,
which provides the user with continuous feedback on
the numerous frequent sets being computed, and per-
mits the user to change the support threshold dynam-
ically. With respect to user focus, Ng et al. [15; 13]
proposed a constrained frequent set mining framework
within which the user can use a rich set of constraints
to guide the mining to find only those rules satisfying
the constraints. The CAP algorithm was developed,
which exploits the constraints to give as much pruning
as possible.

The contribution of this work is to study how scalability
can be enhanced in a mining environment, particularly one
centered around the human user. To truly engage the user
in the data mining process, it is imperative that responses
to the user be delivered as “real time” as possible. Towards
this objective, we introduce in this paper a novel structure
called segment support map (SSM). A light-weight and easy-
to-compute structure, the SSM improves the efficiency of
Cama by enabling the algorithm to obtain sharper upper
bounds on the support of itemsets, which in turn help reduce
the number of candidate itemsets that need to be counted
for support. Experimental results show that the SSM can
improve the efficiency significantly.

Furthermore, even though we present the SSM as a feature
to enhance Carma, we show at the end of this paper that
the SSM can be applied to the conventional mining of as-
sociation rules using the Apriori algorithm (and hence, to
many related data mining tasks using the Apriori algorith-
mic framework). Just as well, the SSM is also applicable to

Volume 2, Issue 2 - page 21

Procedure Carma-Phasel (I'DB = (t1,... ,t,), support sequence (o1, ...

V = 0; /* initialization */

,0n)) {

(1) for i from 1 to n { /* start scanning TDB */

(2) for all v € V with v C ¢;, increment count(v);

(3) forall v Ct; withv¢ V { /* insert if appropriate */

(4) if (for all w C v, w € V and mazSupport(w) > o;) { /* insert v */

(5) add v to V;

(6) firstTrans(v) = 1; count(v) = 1;

(7) if (v a singleton itemset) maxzMissed(v) = 0;

(8) else maxMissed(v) = min{ base, (mazMissed(w)+ count(w) —1) | w C v}

} /* end if */
} /* end for */

(9) /* pruning step, details omitted here */ retain v if razSupport(v) > o;;

} /* end for */
return V;

Figure 1: Phasel of Algorithm Carma

the CAP algorithm. In fact, not only does the SSM help to
provide better pruning by the frequency/support constraint,
but it also exploits any anti-monotone constraint in a similar
fashion.

Among all the scalability studies listed above, the proposed
technique is the most related to the partitioning algorithms.
In Park et al.’s work [17], a hash table is used to partition
itemsets of the same cardinality (e.g., 2) into bins. But the
SSM is different in at least two key aspects. First, the SSM
partitions transactions, not itemsets. Second, the SSM is
intended to be a static data structure, whereas the hash ta-
ble is created dynamically. In Savasere et al.’s work [19],
the Partition algorithm divides transactions into partitions,
and computes all itemsets that are frequent locally within
the partition. In contrast, the SSM is a data structure, not
an algorithm. As will be shown later, the SSM is valuable
to many algorithms, including the conventional Apriori al-
gorithm, Carma and CAP.

The paper is organized as follows. In the next section, we
give an overview of Carma. Section 3 presents an overview
of the SSM. In Section 4, we show how to use the SSM
in Carma. Section 5 shows the experimental results. In
Section 6, we discuss the usefulness of the SSM in other
frequent-set mining algorithms like Apriori and CAP. Fi-
nally, conclusions are presented in Section 7.

2. BACKGROUND: OVERVIEW OF CARMA

To allow the user to dynamically adjust the support thresh-
old, Carma [10] is divided into Phasel and Phasell. Dur-
ing Phasel, Carma constructs a lattice V| called the sup-
port lattice. For each itemset v € V, Carma maintains
three integer counters: (i) firstTrans(v), storing the trans-
action index at which v was inserted into the lattice V;
(ii) count(v), storing the support of v since v was inserted;
and (iii) maxMissed(v), storing an upper bound on the sup-
port of v before v was inserted.

Suppose that the i-th transaction ¢; has just been read.
Then mazSupport(v) = (mazxMissed(v)+count(v))/i gives
an upper bound on the support of v in the first ¢ transac-
tions. At this point after reading ¢;, two main operations
can take place. On the one hand, as shown in Step (2) of
Figure 1, Carma increments count(v) for each itemset v cur-
rently in V' and is a subset of transaction ¢;. On the other
hand, as shown in Step (3), if v, which is a subset of ¢;, is

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

not currently in the lattice V, then v is inserted provided
that the following condition is met:

YwCuv, we€V and maxSupport(w) > o; (1)

where o; is the support threshold at the point after ¢; has
just been read. If the above condition is met and v is in-
serted, the three counters associated with v are initialized in
Steps (6), (7) and (8). Of the three counters, the initializa-
tion of maxMissed(v) requires the most attention. If v is a
singleton itemset, the condition in (1) guarantees that this
transaction is the first transaction containing v, in which
case maxMissed(v) should be initialized to 0. If v is not
a singleton itemset, then maxzMissed(v) is initialized based
on: (i) the counters associated with all subsets w of v, and
(ii) a quantity called base, which is an estimate defined ac-
cording to the support threshold sequence. Here we omit
the precise definition of base, because it is complicated and
immaterial to the rest of the paper.

From time to time, Carma may invoke the pruning step (i.e.,
Step (9)) to prune the lattice V' during Phase I; details of
the pruning step is omitted. Basically, for each non-singleton
itemset v currently in V with maxzSupport(v) < o;, Carma
removes v from V. Finally, to complete the description of
Carma, Phasell re-scans the transaction database DB to
get precise counts for all itemsets v € V.

3. SEGMENT SUPPORT MAP

To provide for a human-centered and exploratory environ-
ment for data mining, it is imperative that the system be
efficient and be able to deliver responses to the user as “real
time” as possible, so as not to lose the attention of the
user. Towards this objective, we introduce in this section
a light-weight structure called segment support map (SSM).
The structure consists of the support count for all singleton
itemsets in each segment in the transaction database.

Let the transaction database T'DB be divided arbitrarily
into m partitions, called segments. A segment support map
(SSM) is a structure consisting of supporty({a}) for all sin-
gleton itemsets {a}, where supporty({a}) denotes the sup-
port of {a} in the k-th segment for 1 < k < m. The support
of {a}, by definition, is then > " | supporty({a}). While the
SSM only contains the segment supports of singleton item-
sets, it can be used to give an upper bound on the support

Volume 2, Issue 2 - page 22

of an arbitrary itemset v:

estsup(v) = Z min{supporty({a}) |a € v} (2)
k=1

where estsup(v) denotes the estimated segment support of v.
For example, suppose there are 4 segments in the SSM, and
the (actual) segment supports for items a,b and c are as
shown:

| | seg1 [seg2 [seg3 [segd [TDB |

{fa} [20 [10 5 20 55
oy | > 20 | 20 | 20 65
{3] 10 | 20 | 10 | 10 50

By equation (2), estsup({a,b}) is min{20, 5}+ min{10, 20}
+ min{5,20}+ min{20, 20}, for a total of 40.

Similarly, by equation (2), the support of {a, b, ¢} is bounded
from above by 30. On the other hand, if we did not use the
SSM (i.e. the number of segments is 1), then the estimated
support for {a,b} would have been min{55,65} = 55, while
that for {a,b, ¢} would have been min{55, 65,50} = 50.
Clearly, the upper bound estsup(v) provided by the SSM
can be made tighter in two ways. The first way is to in-
crease the number of segments m. The amount of storage
space required is then increased linearly. In an extreme case,
the number of segments m equals to the number of transac-
tions m in the database. Then, the upper bound estsup(v)
is so tight that it becomes the actual support count of v.
The second way is to generalize the SSM to store not only
the actual segment supports of singleton itemsets, but also
those of itemsets of higher cardinalities (i.e. itemsets of sizes
greater than one). For example, for the support of {a,b, c},
the actual segment supports based on {a, b}, {a, ¢} and {b, ¢}
provide a tighter upper bound than those based on {a}, {b}
and {c}. The price is that the amount of storage space re-
quired is then increased exponentially with respect to the
sizes of the stored itemsets. Thus, in this paper, we restrict
our consideration to segment supports of singleton itemsets.
In this way, we keep the SSM as a very light-weight struc-
ture. For instance, for a domain of 10 000 items, even 50
segments require the storage of only 500 000 integers. We
also note that the SSM is a fixed structure that can be com-
puted once at “compile-time”, and can be used regardless
of how the support threshold is changed dynamically mul-
tiple times during “exploration-time”. Finally, there is no
searching involved when the SSM is used. Once the singleton
itemsets are enumerated based on some canonical ordering,
the itemsets themselves (i.e. the first column of the above
table) need not be stored, and direct addressing into the
SSM makes the computation of equation (2) very efficient.

4. USING THE SSM IN CARMA

In this section, we show how the SSM can be applied to
the transaction-wise frequent-set mining algorithm, Carma,
to effect more pruning. In the rest of the paper, we use
Carma(w/ SSM) to denote Carma with the SSM, and use
Carma(w/o SSM) to denote the original Carma.

Recall from Section 2 and from Steps (4) and (9) of Figure 1
that the only source of pruning in Carma is based on the
condition maxSupport(w) < ;. The term maxSupport(v)
is defined as (maxMissed(v) + count(v))/i. In turn, the

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

term mazMissed(v) is mainly initialized as in Step (8):

mazMissed(v) = min {base, (maxMissed(w) +
count(w)) | w C v} (3)

However, there are two main weaknesses/problems with this
pruning strategy of Carma.

The first problem is that the right-hand-side of the above
equation is too loose an upper bound. And because of the
recursive nature of the equation, a loose initialization of
mazMissed(v) has a compound effect that causes the bound
for max Missed(u), for all supersets u of v, to be quite loose
as well.

The second problem is with the division by ¢ in the term
(maxzMissed(v) + count(v))/i. Basically, this is a uniform
distribution assumption — assuming that the transactions
supporting v are uniformly distributed, i.e. whatever hap-
pens in the first ¢ transactions will continue to hold for
the remaining transactions. In practice, this assumption is
hardly true. For example, if the transaction database con-
sists of supermarket transactions over a few months, items
sold during the summer can be very different from those sold
in the fall. Thus, pruning based on this assumption can be
highly inaccurate. One consequence is that an itemset might
be pruned too early, and needs to be re-inserted afterwards;
another consequence is that an itemset might be kept for
too long, while it should have been pruned earlier.

The SSM can record whatever variations that may exist in
the support of an itemset from different parts of the transac-
tion database. In this section, we show how it can be used to
tighten the maxMissed(v) bound, as well as to effect prun-
ing while discarding the uniform distribution assumption.

4.1 Tightening the maxMissed(v) Bound

Figure 2 depicts the various events during a transaction
scan. Here we assume that the k-th segment contains h trans-
actions. Suppose a certain itemset v is inserted after the
j-th transaction of this segment (i.e., the transaction ¢,4;
where j < h) has been read. Exactly as in Carma(w/o
SSM), Carma(w/ SSM) initializes mazMissed(v) as per
equation (3). But in the presence of the SSM, Carma(w/
SSM) can divide mazMissed(v) into two components:

1. the part from the first £k — 1 segments, which we refer
to as maxzMissedi(v); and

2. the part from within the first j transactions in the k-th
segment, which we refer to as mazxMisseda(v).

Let us examine estsup(v) in equation (2) in the finer gran-
ularity of individual segments. Specifically, let estsupy(v)
denote the estimated segment support of v (via the SSM)
from the k-th segment, i.e.,

estsupr(v) = min{supportr({a}) | a € v} (4)

Then, the first component maxzMissed: (v) is simply:
k-1
mazMissed;(v) = Z estsup,(v) (5)
u=1

which is the sum of the estimated segment supports of v
from the first £ — 1 segments.

The second component maxMissedz(v) is harder to esti-
mate, because this corresponds to only part of a segment.

Volume 2, Issue 2 - page 23

point of insertion

|

t ty

<~ mazMissed(v) ——»

to+j to+n o tn

< futureg(v) ——»

<——— mazMissed, (v) ———»}+—— k-th segment——»]|

Figure 2: Using the SSM for maxzMissed(v) and futureg(v)

Clearly, maxMissedz(v) is bounded from above by j, the
number of transactions in the k-th segment read so far.
Depending on how far the current segment has been read,
such a bound may be too loose. In this case, the estimated
segment support of v — just from the k-th segment, i.e.
estsupy(v) — may give a tighter bound. Thus, the second
compounent of maxzMissed(v) can be computed as:

mazrMissedz(v) = min{j, estsupy(v)} (6)

Hence, Carma(w/ SSM) can combine all of equations (3),
(4), (5) and (6) to give a better bound for mazMissed(v).
Note that this is a bound obtained at the point of insertion
of v, i.e., after the transaction t,4; has been read.
However, at a later point in time, when the entire k-th seg-
ment has been read, a better bound may be possible. This
is because in equation (6) above, estsup(v) is used to es-
timate the support of v from the first j transactions in the
k-th segment, when in fact the same bound applies to the
entire segment, implying that we should be able to do bet-
ter. Let county(v) denote the actual support of v in the k-th
segment after v was inserted. Then by the definition of the
SSM, it must be the case that:

mazMisseds(v) + county(v) < estsupy(v) (7

Hence, while equation (6) is appropriate for initializing the
term maxMissed2(v) at the point of insertion, the follow-
ing equation can be used to update, and possibly tighten,
maxzMisseds(v) after the entire k-th segment has been pro-
cessed:

mazMisseds(v) = min{j, (estsupy(v) — county(v))} (8)

The value of mazMissed(v) can be tightened accordingly.

4.2 Creating the future,(v) Bound

Recall that there are two weaknesses associated with the
pruning based on the condition mazSupport(v) < o;, where
the term rnaxSupport(v) = (maxMissed(v) + count(v))/i.
So far we have addressed the first problem by tightening
the maxMissed(v) bound. Next we turn our attention to
the second problem of making the (strong) assumption of
uniform distribution.

Suppose that the transaction scan is at the point when the
k-th segment has just been processed. Given an itemset v
that has been inserted and is being processed, let futurey(v)
denote an upper bound on the support of v from all the fu-
ture/remaining segments, i.e., (k+1)-th, ..., m-th segments.
With the SSM, this is defined as:

futurey(v) = Z estsupy(v) 9)

u=k+1

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

By putting all the pieces together, the old pruning con-
dition, which is based on the value of maxSupport(v) =
(maxzMissed(v) + count(v))/i, can now be replaced by a
new condition (maxMissed(v)+ count(v) + futurey(v))/n,
where n is the total number of transactions, at the point
when the k-th segment has just been processed. This new
condition can be used in Step (9) in Figure 1. Note that
both maxMissed(v) and future(v) are upper bounds, and
count(v) is the actual count up to the point of pruning.
Thus, unlike the old condition, the new condition guaran-
tees that a pruned itemset will never need to be re-inserted,
unless the support threshold is reduced.

4.3 Skipping Confirmed Infrequent Itemsets

In addition to helping to tighten the maxSupport(v) and
mazMissed(v) bounds for pruning, the SSM can enhance
Carma in better exploiting the frequency constraint. It
is well-known that the frequency constraint support(S) >
minsup is anti-monotone. If any itemset S is frequent, then
all its subsets S’ C S are also frequent. Contrarily, any
itemset that already has a support below the user-defined
threshold minsup should be tossed away, because adding
more items to the itemset will never increase its support
count, and thus will never make it satisfy the frequency
constraint. Currently, Carma exploits anti-monotonicity by
making sure that an itemset v is added to the support lat-
tice, only if all its subsets w are already in the lattice.
With the SSM, additional pruning based on anti-monotonicity
can be effected as follows. After transaction ¢; has just been
read, Carma(w,/ SSM) only needs to consider those itemsets
that do not include any confirmed infrequent single item as
candidates. For example, suppose t; = {a,b,...,k,1}, and
knowing from the SSM of these 12 items that a,b and ¢
have a support below ;. Let t7°* denote the subset of t;
not containing any confirmed infrequent single item. Then,
for all subsequent computation regarding ¢;, we only need to
consider t75M = t; —{a, b, c}, because no itemset containing
a,b or ¢ can be frequent. Specifically, for subsets of size j
of t;, we need to process only (}), as opposed to ('), item-
sets. Accumulating for all j > 2, this simple optimization
step can bring about considerable saving.

5. EXPERIMENTAL RESULTS

The experimental results cited below are based on a trans-
action database T'DB of 100k records, and a domain of 10k
items. The TDB was generated by the program developed
at IBM Almaden Research Center [3]. The average trans-
action size is 10 items, and the average cardinality of a fre-
quent set is 4. Unless otherwise specified, we used a sup-
port threshold of 0.1%. All experiments were run in a time-

Volume 2, Issue 2 - page 24

Changing Support Threshold
0.17 T T

T
Carma(w/ SSM) ——

0.1695

0.169 -

0.1685

0.168 -

0.1675 -

0.167

Size of lattice relative to Carma(w/o SSM)

0.1665

0.166 -

0.1655 L L L L
0 5 10 15
Number of segments

(a) Relative Size of Lattice

Changing Support Threshold
T T

T
Carma(w/ SSM) ——

Speedup relative to Carma(w/o SSM)

28 L L L L
20 25

10 15
Number of segments

(b) Relative Speedup

Figure 3: SSM-based Pruning: Changing Support Threshold

sharing environment in a 600 MHz machine. The speedup
shown is with respect to total CPU and I/O time.

In this experiment, we compared the results for two algo-
rithms (implemented in C): Carma(w/o SSM) and Carma(w/
SSM). The former does not include the SSM, whereas the
latter does. The difference is to highlight the effectiveness
of SSM-based pruning.

5.1 SSM-basedPruning: Constantand Chang-
ing Support Threshold

We evaluated how the number of segments in the SSM can
benefit Carma(w/ SSM), with a query consisting of the fre-
quency constraint support(S) > minsup. We conducted two
sets of experiments: (i) one experiment with a fixed support
threshold of minsup = 0.1%, and (ii) another with support
threshold minsup varied from 0.075% to 0.125% then to
0.1%. These values were chosen to correspond to a similar
set of experiments shown for Carma in Hidber’s work [10].
The results of these two sets of experiments turned out to
be almost the same. For lack of space, we only show the
results based on changing support threshold.

The x-axis in Figure 3 shows the number of segments varying
from 2 to 25. The y-axis of Figure 3(a) shows the size of
the lattice computed by Carma(w/ SSM) relative to that
by Carma(w/o SSM). The size of the lattice corresponds to
the number of itemsets that were counted. The smaller the
size, the more effective the pruning was. As expected, the
larger the number of segments in the SSM, the larger the
number of itemsets that were pruned. For instance, with 10
segments, the number of itemsets counted was about 1/6 of
that required without the SSM.

The y-axis of Figure 3(b) gives the speedup of Carma(w/
SSM) relative to Carma(w/o SSM) in terms of total runtime.
With increasing number of segments, while the relative size
of the lattice decreases monotonically in Figure 3(a), the rel-
ative speedup shows a peak when the number of segments
is 10 in Figure 3(b). The peak occurs when the reduction
in the lattice size is no longer significant enough to offset
the cost of processing an extra segment. The result shows
that while the SSM is a light-weight structure (e.g., 10 seg-
ments requiring 100 000 integers for 10k items, for a total
space of 0.2MB using 2 bytes per integer), the pruning ef-

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

fect is spectacular. In absolute terms, Carma(w/o SSM)
took about 10 seconds total time; whereas Carma(w/ SSM)
took less than 3 seconds with 10 segments. This is very en-
couraging because this shows that we are making significant
progress towards the eventual goal of providing real time
response/completion of query evaluation.

5.2 SSM-based Pruning: “Seasonal” Trans-
action Database

In Section 4.2, we mentioned that the SSM is well suited to
handle transaction databases that do not follow the uniform
distribution assumption, and there are many databases of
this kind. An example is the supermarket database consist-
ing of “seasonal” transactions. By using the IBM Almaden
program, we generated a transaction database in which the
effect of the “seasonal” nature has been simulated. The fol-
lowing table shows the speedup of Carma(w/ SSM) relative
to that of Carma(w/o SSM).

| Number of Segments | Relative Speedup |

2 5.81
4 5.96
5 5.99
8 6.04
10 6.06
16 6.03
20 6.00
25 5.96

For the “seasonal” data, the average speedup is around 6
times, as opposed to around 3 times as shown in Figure 3(b).
This shows that, mainly via the futurex(v) bound, the SSM
delivers additional benefit when the transaction database is
not uniformly distributed and is “seasonal” in nature.

6. DISCUSSIONS

So far we have studied how the SSM help to improve the
efficiency of Carma. But it is important to note that benefits
of the SSM are not confined to Carma, it can be applied to
other frequent-set mining algorithms. In this section, we
show two examples: (i) how to use the SSM in Apriori, and
(ii) how to use the SSM in CAP.

Volume 2, Issue 2 - page 25

6.1 Using the SSM in Apriori

Recall from Section 3 that the SSM comnsists of the support
count for all singleton itemsets in each segment in the trans-
action database. So, with the SSM, the Apriori algorithm
does not need to generate the candidate 1-itemsets and test
for support. It can find the frequent 1-itemsets by selecting
those itemsets whose support count Y 7" | supporty(v) is at
least the user-defined threshold minsup.

Moreover, such an optimization can be extended to higher
levels. With the SSM, the Apriori algorithm can reduce the
number of itemsets to be counted by discarding those item-
sets v € Cy with estsup(v) = > 7 estsup;(v) less than
the user-defined threshold, for £ > 2. These itemsets are
confirmed infrequent. To illustrate, let us return to the ex-
ample introduced in Section 3. Suppose the user-defined
threshold minsup is set to 42. Without the SSM, the Apri-
ori algorithm needs to count the support for all 3 itemsets
{a,b},{a,c} and {b,c}; but, with the SSM, the Apriori al-
gorithm only needs to consider the itemset {b, c}. Similarly,
the Apriori algorithm, with the SSM, can further reduce the
number of itemsets to be counted in higher levels.

6.2 Using the SSM in CAP

For the frequent-set mining algorithms that we have dis-
cussed so far, they cannot handle constraints other than the
frequency constraint support(S) > minsup. As a result,
the user may need to wait for hours for numerous computed
rules, out of which only a small fraction might be interested
to the user. Thus the user incurs a high computational cost
that is disproportionate to what the user wants and gets.
To allow the user to express his focus, Ng et al. [15; 13] pro-
posed: (i) a constrained frequent mining framework within
which the user can use a rich set of constraints to guide the
mining to find only those rules satisfying the constraints,
and (ii) a mining algorithm, called CAP, which exploits the
constraints to ensure that the computation effort is propor-
tional to the selectivity of the constraints. These constraints
include aggregation constraints, where the allowable aggre-
gation operations are the basic ones supported by SQL; i.e.
min(), max(), sum(), count() and avg().

The CAP algorithm exploits the constraints, and pushes
them as deep “inside” the computation as possible. For
instance, for a constraint C' that is anti-monotone, if S does
not satisfy C, then any superset S’ of S is removed from
counting because S’ does not satisfy C.

With the SSM, the CAP algorithm can further exploit the
constraints so as to further improve the performance. Re-
call from Section 6.1, the anti-monotonicity nature of the
frequency constraint support(S) > minsup can be exploited
to speed up the mining process. The SSM we have seen so
far can be easily extended to help exploit anti-monotone con-
straints other than the frequency constraint. Hence, in addi-
tion to the above optimizations for Apriori, the SSM has ex-
tra advantages to CAP as follows. Let us use sum(S.Price)
< 10 as an example. With the SSM, all CAP needs to do
is to add one column to the SSM, recording the Price value
of each singleton itemset. In other words, the CAP algo-
rithm with SSM only needs to consider those itemsets that
do not contain any confirmed unsatisfiable single item as
candidates. For example, suppose that among the items in
the domain, only a,d and e have Price more than 10. Then,
for all subsequent computations, we can discard any itemset
containing a,d or e, because no itemset containing a,d or e

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

can satisfy the anti-monotone constraint.

When combining with the optimization for the frequency
constraint, the SSM brings further saving. Using the above
example, and suppose that only a,b and ¢ have a support
below minsup. Then, for all subsequent computation, we
can discard any itemset containing a,b,c,d or e, because
no itemset containing these confirmed infrequent and/or
confirmed unsatisfiable single items can satisfy both anti-
monotone constraints.

7. CONCLUSIONS

A key contribution of this paper is to optimize the perfor-
mance of mining algorithms. To this end, we have pro-
posed and studied the novel structure of SSM. While very
light-weight, it helps to tighten the mazSupport(v) and
maxMissed(v) bounds for pruning, and to better exploit the
frequency /support constraint as well as other anti-monotone
constraints. Experimental results reported here convinc-
ingly show the benefits of SSM. With a very small price
to pay (e.g., 0.2MB of space for 10 000 items), the SSM
can prune a much larger number of itemsets. Consequently,
as an enhancement to Carma, the SSM can bring about a
speedup that is a few times better than without using the
SSM.

Furthermore, even though we present the SSM as a feature
to enhance Carma, we have shown that the SSM can be
applied to the conventional mining of association rules us-
ing the Apriori algorithm (and hence, to many related data
mining tasks using the Apriori algorithmic framework). The
same can be said about constrained mining, as is done in
CAP.

In ongoing and future work, we are interested in exploring
improvements to the SSM. For example, we are interested
to investigate the benefits of storing the actual segment sup-
ports of higher cardinalities in the SSM. Along this direc-
tion, an interesting question to explore is that given a fixed
amount of space for the SSM, which itemsets (of varying
cardinalities) should be stored in it.

8. REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases.
In Proc. 1993 SIGMOD, pp. 207-216.

[2] R. Agrawal and J.C. Shafer. Parallel mining of associa-
tion rules. IEEE TKDE, 8(6), pp. 962-969, Dec. 1996.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. 1994 VLDB, pp. 487-499.

[4] R.J. Bayardo. Efficiently mining long patterns from
databases. In Proc. 1998 SIGMOD, pp. 85-93.

[5] S. Brin, R. Motwani, and C. Silverstein. Beyond market
basket: Generalizing association rules to correlations.
In Proc. 1997 SIGMOD, pp. 265-276.

[6] D.W. Cheung, J. Han, V.T. Ng, and C.Y. Wong.
Maintenance of discovered association rules in large
databases: An incremental updating technique. In
Proc. 1996 ICDE, pp. 106-114.

Volume 2, Issue 2 - page 26

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

T. Fukuda, Y. Morimoto, S. Morishita, and
T. Tokuyama. Data mining using two-dimensional op-
timized association rules: Scheme, algorithms, and vi-
sualization. In Proc. 1996 SIGMOD, pp. 13-23.

E.-H. Han, G. Karypis, and V. Kumar. Scalable par-
allel data mining for association rules. In Proc. 1997
SIGMOD, pp. 277-288.

J. Han and Y. Fu. Discovery of multiple-level associa-
tion rules from large databases. In Proc. 1995 VLDB,
pp. 420-431.

C. Hidber. Online association rule mining. In Proc.
1999 SIGMOD, pp. 145-156.

M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivo-
nen, and A.I. Verkamo. Finding interesting rules from
large sets of discovered association rules. In Proc. 199/
CIKM, pp. 401-408.

F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos.
Ratio rules: A new paradigm for fast, quantifiable data
mining. In Proc. 1998 VLDB, pp. 582-593.

L.V.S. Lakshmanan, R. Ng, J. Han, and A. Pang. Op-
timization of constrained frequent set queries with 2-
variable constraints. In Proc. 1999 SIGMOD, pp. 157—
168.

R.J. Miller and Y. Yang. Association rules over interval
data. In Proc. 1997 SIGMOD, pp. 452-461.

R.T. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang.
Exploratory mining and pruning optimizations of con-
strained associations rules. In Proc. 1998 SIGMOD,
pp- 13-24.

J.S. Park, M.-S. Chen, and P.S. Yu. Efficient paral-
lel mining for association rules. In Proc. 1995 CIKM,
pp. 31-36.

J.S. Park, M.-S. Chen, and P.S. Yu. Using a hash-based
method with transaction trimming for mining associa-
tion rules. IEEE TKDE, 9(5), pp. 813-825, Sept./Oct.
1997.

S. Sarawagi, S. Thomas, and R. Agrawal. Integrat-
ing association rule mining with relational database
systems: Alternatives and implications. In Proc. 1998
SIGMOD, pp. 343-354.

A. Savasere, E. Omiecinski, and S. Navathe. An ef-
ficient algorithm for mining association rules in large
databases. In Proc. 1995 VLDB, pp. 432-443.

C. Silverstein, S. Brin, R. Motwani, and J. Ullman.
Scalable techniques for mining causal structures. In
Proc. 1998 VLDB, pp. 594-605.

R. Srikant and R. Agrawal. Mining quantitative asso-
ciation rules in large relational tables. In Proc. 1996
SIGMOD, pp. 1-12.

H. Toivonen. Sampling large databases for association
rules. In Proc. 1996 VLDB, pp. 134-145.

D. Tsur, J.D. Ullman, S. Abiteboul, C. Clifton, R. Mot-
wani, S. Nestorov, and A. Rosenthal. Query flocks: A
generalization of association-rule mining. In Proc. 1998
SIGMOD, pp. 1-12.

Volume 2, Issue 2 - page 27

