Towards Long Pattern Generation in Dense Databases

Charu C. Aggarwal
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

charu@us.ibm.com

ABSTRACT

This paper discusses the problem of long pattern genera-
tion in dense databases. In recent years, there has been an
increase of interest in techniques for maximal pattern gen-
eration. We present a survey of this class of methods for
long pattern generation which differ considerably from the
level-wise approach of traditional methods. Many of these
techniques are rooted in combinatorial tricks which can be
applied only when the generation of frequent patterns is not
forced to be level wise. We present an overview of the differ-
ent kinds of methods which can be used in order to improve
the counting and search space exploration methods for long
patterns.

Keywords

Long Pattern Generation, Association Rules

1. INTRODUCTION

The association rule problem was introduced by Agrawal et
al. [3] and has been recognized in the literature as a funda-
mentally important problem in the field of data mining. The
problem of association rules is defined on a database which
is composed of a set of binary records called transactions.
Each transaction contains information about the presence
or absence of items. For example, in a supermarket appli-
cation, a transaction could consist of the set of items which
the customer bought. It is often useful to find the nature
of the relationships among the buying patterns of the differ-
ent items. Such relationships can be modeled as association
rules [3]. Applications of association rules extend to finding
useful patterns in consumer behavior, target marketing, and
electronic commerce. A key step of association rule mining is
finding frequent itemsets or large itemsets [3]. These are sets
of items whose support (or fractional presence) is larger than
a user-specified threshold. A prominent algorithm for fre-
quent itemset generation is the Apriori technique [4], which
works quite well when the frequent itemsets are reasonably
short. One property of this algorithm is that for each fre-
quent itemset, all subsets of it need to be generated by the
algorithm. This can be quite compute-intensive, when the
patterns are long. The Apriori-method is the outline upon
which many frequent itemset generation algorithms in the
literature are based. Therefore, such methods suffer from
the same shortcomings for dense databases which contain

SIGKDD Explorations.

long patterns.

Considerable research has been devoted towards finding faster
methods for generating large itemsets [4; 5; 9; 10; 11; 16;
17; 20; 27]. The large itemset problem is reasonably well
solved at least for the case of very sparse sales transaction
data, when the pattern lengths are short [1; 4]. An inter-
esting analysis of the impact of different kinds of data on
access costs has been provided in [9]. An Apriori-style algo-
rithm with improved counting techniques using columnwise
data access for databases with a larger number of items has
been also been discussed in the same work. When the ac-
tual frequent patterns are wide, even the CPU-costs of any
algorithm which is based on the Apriori-framework would
be compromised by the investigation of all 2* subsets of fre-
quent k-patterns. In such cases, the frequent itemset gen-
eration algorithms become CPU-bound. For such cases, it
becomes important to develop techniques and algorithms
which are more focussed on the computational aspect rather
than the I/O costs. Such techniques are inherently combi-
natorial and work well only with main memory databases.
In this paper, we also discuss the challenges of extending
these ideas to larger databases.

Some of the algorithms in the literature such as MazMiner
avoid the problem of generating all possible sub-patterns of
frequent itemsets by implementing lookaheads [5], in which
supersets of frequent patterns are used in order to prune off
potential candidates in the search. Other innovative ideas
for handling the long pattern case are discussed in [27]. In
spite of these advances [5; 9; 27|, finding computationally
efficient algorithms for generating long patterns continues
to be a very difficult problem.

The focus of most algorithms in the literature is on level-
wise pattern generation: in other words (k + 1)-itemsets
are generated only after all k-itemsets have been generated.
The Apriori algorithm and its variants satisfy this property.
Even the recent look-ahead-based algorithm discussed [5] for
mining long patterns guarantees the discovery of all (k+1)-
itemsets only after generation of all k-itemsets, even though
some of the (k + 1)-itemsets may be discovered earlier than
the k-itemsets. The reason for this natural algorithmic de-
sign has been motivated by the desire to restrict the number
of passes over the database to the length of the longest pat-
tern. This often results in the generation of a large number
of subsets of frequent itemsets. A few methods [7] deviate
from this natural design in order to reduce the number of
I/0O passes, but tend to be Apriors-like in their overall ap-
proach; consequently the combinatorial explosion problem
continues to be an issue.

Volume 3, Issue 1 - page 20

The long pattern problem is so difficult to solve computa-
tionally, that even for databases of relatively small sizes,
it may be very difficult to find long patterns [5]. In the
past decade, memory availability has increased by orders of
magnitude. It has recently started becoming increasingly
evident that in the near future, many medium to large size
databases are likely to be main memory resident. For prob-
lems in which the patterns are longer than 15-20 items, and
the database is too large to fit under the current memory
limitations (which are reaching the Gigabyte order), most
of the algorithms which require the generation of all sub-
sets of frequent itemsets are impractical anyway. For the
long pattern problem, it may perhaps be realistic to design
algorithms with much greater focus on CPU requirements
for transaction sets of moderate sizes which can fit in main
memory. In fact, many domains of data such as computa-
tional biology have data sets which show this property [18].

2. CLOSED FREQUENT ITEMSETS

An itemset X is closed if there does not exist another item-
set X’ such that X’ is a superset of X, but the transactions
which contain X and X' are exactly the same. It is clear that
the set of frequent closed itemsets may be orders of magni-
tude smaller than the set of all itemsets. For example, in a
database with a single transaction of 50 items, there are 25
frequent itemsets with 100% support, but there is only one
frequent closed itemset, which is the original transaction. A
good number of algorithms have been developed for frequent
closed itemset generation [12; 13; 26].

CHARM: This is an efficient algorithm [26] for enumerat-
ing the set of all closed frequent itemsets. The unique fea-
ture of this algorithm is that it simultaneously explores both
the itemset space and transaction space. This feature helps
it to quickly identify the closed frequent itemsets without
having to enumerate many non-closed subsets. The algo-
rithm has been found to scale linearly in terms of number
of itemsets and the number of closed itemsets found. An-
other related method has recently been proposed for finding
non-redundant association rules [25]. It has been shown in
the same work that the number of non-redundant rules pro-
duced by this approach is exponentially smaller than the
traditional approach. Therefore, it can often be used in or-
der to mine dense databases.

CLOSET: An interesting class of methods has recently
been proposed by Han et al. [11], which find frequent item-
sets without candidate generation. This techniques repre-
sents the original database in the form of an FP-Tree struc-
ture which greatly reduces the time for subsequent mining.
The FP-Tree structure can be used in order to find either
the set of all itemsets [11] or the set of all frequent closed
itemsets [13]. It has been shown in [13], that the CLOSET
algorithm outperforms the CHARM algorithm considerably.
We note that even though the set of closed frequent item-
sets is much smaller than the set of all itemsets, it cannot
compare with the set of mazrimal itemsets. An itemset is de-
fined to be a frequent mazimal itemset, if it is frequent, and
no superset of that itemset is frequent. In many cases, the
set of maximal itemsets is orders of magnitude smaller than
the set of closed itemsets. In such cases, the frequent closed
itemset algorithms spend a lot of time exploring redundant
parts of the search space. Often, it may be desirable to
use methods which are more restrictive in exploring parts

SIGKDD Explorations.

NULL
A B C D
AB AC C BD
ABC

Figure 1: The itemset lattice

of the search space in which no superset of any generated
pattern is also frequent. The FP-Tree method [11] can also
be extended to finding maximal itemsets.

3. LATTICE BASED METHODS

Frequent Patterns satisfy an important property which is
referred to as the closure property. The closure property is
that every subset of a frequent pattern is also a frequent
pattern in of itself. This property helps us organize the
frequent itemsets in the form of a lattice structure. In a
lattice of frequent itemsets, a node exists for each frequent
itemset. An edge exists between a pair of nodes, when the
itemset corresponding to one is smaller than the itemset
corresponding to the other by one item. An example of the
adjacency lattice is illustrated in Figure 1.

The adjacency lattice induces a natural graph structure on
the set of frequent itemsets. This graph structure can be
exploited in order to develop more efficient frequent itemset
algorithms. Two interesting maximal pattern generation al-
gorithms are MazClique and MazEclat [24; 27] which divide
the lattice into cliques and mine them bottom up with a
vertical database representation. A variety of strategies are
discussed in [24] for exploring the lattice of frequent item-
sets. One of the drawbacks of this technique is that it relies
on a pre-processing method which restricts future applica-
bility.

Another interesting lattice based method is pincer-search
[16]. This method uses Apriori-like candidate generation
along with another method for finding long candidate item-
sets used for superset frequency pruning. The primary idea
in pincer-search is to combine a bottom-up search along with
a restricted top-down search methodology. The restricted
top-down search is used to prune candidates in the bottom-
up search. The long candidate itemset generation proce-
dure of pincer-search is somewhat similar to the MazClique
method [27]. This method is however not quite as effective
as the MazMiner method [5] which falls in the class of tree
based methods.

Volume 3, Issue 1 - page 21

ull Level O

Level 1

AN
N

Level 3

acdf Level 4

Figure 2: The lexicographic tree

4. TREE BASED METHODS

Just as the frequent itemsets can be arranged in the form
of a lattice structure, they can also be arranged in a tree
structure by taking into account a particular ordering of the
items. This property helps us organize frequent itemsets in
the form of a conceptual representation referred to as the
lexicographic tree [1]. A set representation of this structure
is also referred to as the enumeration tree [5; 19; 23]. Since
this conceptual representation is behind the development of
a host of recent methods for long pattern generation, we will
provide some more understanding of this structure.

We assume that a lexicographic ordering exists among the
items in the database. In order to indicate that an item ¢ oc-
curs lexicographically earlier than j, we will use the notation
i <r j. The lexicographic tree is an abstract representation
of the large itemsets with respect to this ordering. The lex-
icographic tree is defined in the following way:

(1) A node exists in the tree corresponding to each large
itemset. The root of the tree corresponds to the null itemset.
(2) Let I = {i1,...i1} be a large itemset, where i1,z ...
are listed in lexicographic order. The parent of the node I
is the itemset {i1,...%x—1}

This definition of ancestral relationship naturally defines a
tree structure on the nodes, which is rooted at the null node.
It is easy to see that the lexicographic tree structure is very
closely related to the lattice representation of itemsets (one
is a subgraph of the other). An example of the lexicographic
tree is illustrated in Figure 2. A frequent 1-extension of an
itemset such that the last item is the contributor to the ex-
tension will be called a frequent lexicographic tree extension,
or simply a tree extension. Thus, each edge in the lexico-
graphic tree corresponds to an item which is the frequent
lexicographic tree extension to a node. We will denote the
set of frequent lexicographic tree extensions of a node P by
E(P). In the example illustrated in Figure 2, the frequent
lexicographic extensions of node a are b, ¢, d, and f.

Let @ be the immediate ancestor of the itemset P in the lexi-
cographic tree. The set of prospective branches of anode P is

SIGKDD Explorations.

defined to be those items in E(Q) which occur lexicographi-
cally after the node P. These are the possible frequent lexico-
graphic extensions of P. We denote this set by F'(P). Thus,
we have the following relationship: E(P) C F(P) C E(Q).
The value of E(P) in Figure 2, when P = ab is {¢,d}. The
value of F(P) for P = ab is {c,d, f}, and for P = af, F(P)
is empty.

A node is said to be generated, the first time its existence is
discovered by virtue of the extension of its immediate parent.
A node is said to have been ezamined, when its frequent
lexicographic tree extensions have been determined. Thus,
the process of examination of a node P results in generation
of further nodes, unless the set E(P) for that node is empty.
Obviously a node can be examined only after it has been
generated.

Let P be a node in the lexicographic tree corresponding to
a frequent k-itemset. Then, for a transaction T we define
the projected transaction T(P) to be equal to T N E(P).
However, if T does not contain the itemset corresponding to
node P then T'(P) is null. For a set of transactions 7, we
define the projected transaction set 7(P) to be the set of
projected transactions in 7 with respect to frequent items
E(P) at P.

Consider the transaction abcdefghk. Then, for the exam-
ple A of Figure 1, the projected transaction at node null
would be {a,b,c,d,e, f,9,h,k} N {a,b,c,d, e, f} = abcdef.
The projected transaction at node a would be bedf. For
the transaction abdefg, its projection on node ac is null
because it does not contain the required itemset ac. It is
important to note that for a given transaction T, the infor-
mation required to count the support of any itemset which
is a descendant of a node P is completely contained in T'(P).
We note that the tree representation provides a convenient
conceptual understanding of the itemsets which is possible
to exploit in order to improve the efficiency of frequent pat-
tern generation. It is possible to explore this tree struc-
ture in a variety of ways which leads of different kinds of
tradeoffs. The most straightforward generation of the tree
structure is by using a simple breadth first approach [5].
This method has the advantage of reducing the number of
database passes in the case of a large database. However,
when one is focussed on main memory pattern generation,
such an advanatge may not be quite as useful.

The FP-Tree structure of [11] should not be confused with
the lexicographic tree structure which is quite different. The
lexicographic tree structure is a conceptual structure which
is tailored towards intelligent candidate exploration, whereas
the FP-Tree structure is built on the original set of transac-
tions. In fact, the FP-Tree method finds frequent itemsets
without candidate generation.

4.1 Intelligent Tree Exploration

We note that the lexicographic tree can be explored in a
variety of ways. The most simplistic one is the breadth-first
method which was first proposed in [5]. Another breadth-
first technique with efficient counting methods has been dis-
cussed in [1]. This technique provides efficient use of cache
locality and works well for large databases, but is relevant
only for the case of finding all patterns rather than maxi-
mal patterns. A significantly more interesting exploration
of the tree is in depth-first order which was introduced in
[2]. This technique is specifically designed for finding long
patterns in dense databases. Another interesting version

Volume 3, Issue 1 - page 22

of the depth-first approach has been presented in [8]. In
depth-first search [2], the nodes of the lexicographic tree are
ezamined in depth-first order. The process of examination
of a node refers to the counting of the supports of the can-
didate extensions of the node. In other words, the support
of all descendant itemsets of a node is determined before
determining the frequent extensions of other nodes of the
lexicographic tree. At a given node, lexicographically lower
item-extensions are counted before lexicographically higher
ones. Thus, the order in which a depth-first search method
would count the extensions of nodes in the Figure 2 is null,
a, ab, abc, abd, ac, acd, acdf, acf, ad, adf, af, be, bed, bd,
¢, cd, cdf, cf, d, df, e, and f. Thus, the depth first strategy
quickly tends to find the longer patterns first in the search
process. Note that the string representations of the nodes
are visited in dictionary order.

The depth-first exploration technique of [2] is combined with
effective transaction projection. Here the idea is to hierar-
chically project the transactions at all or some of the nodes
in the lexicographic tree as it is being generated. Once we
have identified all the projected transactions at a given node,
then finding the subtree rooted at that node is a completely
independent itemset generation problem with a substantially
reduced transaction set. An important fact about hierarchi-
cal projections is that we are effectively reusing the infor-
mation from counting k-itemsets in order to count (k+1)-
itemsets.

Such a reuse of information is made possible by the depth
first strategy, since we only need to maintain the projected
transaction sets on the path of the tree which is currently
being explored. Let us consider a k-itemset I at which the
database is projected. If a transaction T does not contain
this k-itemset I as a subset, then the projection strategy
ensures that T will not be used in order to count any of the
(k + 1)-extensions of I. This is important in reducing the
running time, since a large fraction of the transactions will
not be relevant in counting the support of an itemset. Fur-
thermore, the process of projection reduces the number of
fields in the database to a small number so that the counting
process becomes more efficient. We note that the applica-
bility of the projection methodology extends well beyond
frequent pattern mining, and can be used for problems such
as mining sequential patterns. A slightly different kind of
pattern projection has also been introduced in [11] and has
been used in order to efficiently mine sequential patterns
[14].

It is important to understand that the use of hierarchical
projection in the context of a depth first strategy creates
problem decomposition; here each node is a completely in-
dependent itemset generation problem rooted at that node.
The independence property is a very desirable one, since we
are free to use whatever counting strategy is most suitable
to the data characteristics at that particular node. For ex-
ample, a specialized counting method called bucketing [2]
can be applied only when the number of frequent extensions
at a node P falls below a certain number.

As mentioned earlier, the search space exploration can be
significantly reduced with the help of lookaheads [5]. How-
ever, it turns out that not all strategies have the same level
of efficiency in terms of implementation of lookaheads. The
advantages of a depth first strategy for effective pruning
have been discussed in [2; 8]. Consider a node P with a
set of prospective branches F(P). If the node P U F(P)

SIGKDD Explorations.

is a frequent itemset, then it is not necessary to explore
the subtree rooted at P. One way of doing this is to paral-
lelize the process of finding the support count for the itemset
P U F(P) with that of determining the counts of each of the
candidate extensions of P. The depth first technique also
provides the ability to quickly discover maximal patterns,
and thereby prune away all those branches of the tree such
that PUE(P) is a subset of some itemset which has already
been discovered. This kind of lookahead is more effective
with a lexicographically branch-ordered depth first strategy,
since longer patterns are discovered earlier on. In particu-
lar, any frequent strict superset @ of the itemset P U E(P)
contains P and at least one item ¢ which is lexicographically
smaller than the largest item in P (otherwise ¢ would be
contained in E(P)). This means that @ is lexicographically
smaller than P. Thus @ (or a superset) would be discov-
ered earlier than P. Thus, in a depth first strategy, in order
to determine whether a frequent itemset should be removed
because of non-maximality, we only need to look at itemsets
which have been generated earlier [8]. Furthermore, it has
been shown in [8] that if a superset of the currently gener-
ated itemset is frequent, then it is usually present in the last
50 or so itemsets generated. This leads to a very efficient
algorithm for pruning away a newly generated itemset.
The structure of the lexicographic tree is very much depen-
dent upon the lexicographic ordering of the items in the
database. For example, consider the case when there are
exactly 3 large itemsets: abc, abd, and abe. Let us now con-
sider the cases when the orderings of the items are a, b, ¢, d, e,
and e, d, ¢, b, a respectively. The lexicographic trees for the
two cases are illustrated in Figures 3(a) and (b). It is in-
teresting to note that in one of the cases, the tree structure
tends to be much more bushy, whereas in another case the
branches separate out quickly. Specifically, in the case of
Figure 3(b), the the maximal itemsets eba, dba, and cba sep-
arate out at very high level (level 1) of the tree. Therefore,
the process of using lookaheads is likely to be more effective
in this case. The very first node visited by the depth-first
search procedure after the node null in the Figure 3(a) is
a. In this case the lookahead process {a} U {b,c,d, e} does
not yield a frequent itemset. The same is true of the next
level-1 node b. On the other hand, in the case of the Fig-
ure 3(b), the first node which is visited by the depth-first
search procedure is the node e, and the process of lookahead
eU {b,a} yields a frequent itemset. This example tends to
suggest that the item which occurs in the fewest number of
large itemsets hanging at a node should be first and the item
occuring in the mazimum number of large itemsets should
be last. Since we do not know the large itemsets apriori, the
strategy of ordering from least support to most support is
often a reasonable approximation of the above goal [2; 5;
8]. The efficiency of the algorithm is improved further by
using a dynamic ordering as opposed to a static ordering. In
the case of dynamic orderings, we reorder the items below
each node depending upon the support of each lexicographic
tree-extension.

Another interesting kind of pruning proposed in [8] is the
parent equivalence pruning (PEP). Let P be a node in the
lexicographic tree, and E(P) be the set of frequent exten-
sions of P. Let i be an item in E(P). The idea here is that
when the node P and PU{i} have the same set of projected
transactions, then we only need to explore only those item-
sets rooted at P which necessarily contain the item . This

Volume 3, Issue 1 - page 23

AN

4
//M
ab

I

abc abd abe

bc bd Pe

@

ANV
AR

|

eba
dba cbha

(b)

Figure 3: Illustrating the effect of using different orderings

kind of pruning can significantly reduce the search space
which needs to be explored.

5. INTELLIGENT COUNTING TECHNIQUES

It turns out that the same strategies and data structures
(eg hash tree) [4] which are most useful for counting sparse
databases are no longer so useful in the case of dense data
bases. In this case, even the initial representation of the data
significantly affects the quality of the search. The counting
methods can be built around either a horizontal representa-
tion of the database or a vertical representation.

5.1 Horizontal Counting Methods

In [2] it has been shown that it was better to use the database
in the bitstring representation for the dense case. In the
bitstring representation, each item in the database has one
bit representing it. Thus, the length of each transaction in
bits is equal to the total number of items in the projected
database. Such a representation is inefficient when the num-
ber of items in a transaction is significantly less than the to-
tal number of items. This is because of the fact that most of
the bits take on the value of 0. This is not the case in dense
databases for which most bits take on the value of 1. Fur-
thermore, the density increases even further for lower level
nodes and therefore the efficiency of the bit representation
increases further.

The projection techniques of tree based methods can be
combined eith the bit string representation in order to im-
prove the counting times substantially [2]. Let us consider
a node P, at which it is desirable to count the support of
each item in F(P). Let T be a transaction in 7 (P). A naive
method of counting would be to maintain a counter for each
item in F(P) and add one to the counters of each of those
elements for which the corresponding bit in T takes on the
value of 1. However, it is possible to reduce the counting
times greatly by using the bit vector representation of the
transactions [2; 8].

We assume that each transaction T' € 7 (P) contains n bits.

SIGKDD Explorations.

Therefore, it can be expressed in the form of [n/8] bytes.
Each byte of the transaction contains the information about
the presence or absence of eight items, and the integer value
of the corresponding bitstring can take on any value from 0
to 28 — 1 = 255. Correspondingly, for each byte of the (pro-
jected) transaction at a node, we maintain 256 counters, and
we add 1 to the counter corresponding to the integer value
of that transaction byte. This process is repeated for each
transaction in 7 (P). Therefore, at the end of this process,
we have 256+ [n/8] counts. We follow up with a postprocess-
ing phase in which we determine the support of an item by
adding the counts of the 256/2 = 128 counters which take on
the value of 1 for that bit. Thus, this phase requires 128 x n
operations only, and is independent of database size. The
first phase, (which is the bottleneck) is the improvement
over the naive counting method, since it performs only 1
operation for each byte in the transaction, which contains 8
items. Thus, the method would be a factor of 8 faster than
the naive counting technique, which would need to scan the
entire bitstring.

5.2 Vertical Counting Techniques

In vertical counting methods the database is represented in
a fundamentally different format. Here, for each item in the
database, we maintain a vertical list of all the transaction
identifiers in which it occurs [9; 21; 27]. This technique can
be used to some advantage in order to reduce the counting
time. In particular, it has been shown [9], that the disk
access times for a counting method with the vertical repre-
sentation are substantially less for the dense case. However,
this observation is not quite as relevant while performing
the mining in the context of a main memory database.

However, we note that some advantages of the vertical rep-
resentation or a mixed representation can be harnessed very
effectively in tree based methods as well [2; 8]. For example,
in [2], the horizontal transaction projection techniques are
combined with a vertical bit vector maintenance in order to
improve the counting techniques. At any point in the search,

Volume 3, Issue 1 - page 24

we maintain the projected transaction sets for only some of
the nodes on the path from the root to the node which is
currently being extended. A pointer is maintained at each
node P to the projected transaction set which is available
at the nearest ancestor () of P at which such a set is indeed
maintained. We also maintain a bitvector containing the in-
formation about which transactions contain the itemset for
node P as a subset. The length of this bitvector is equal to
the total number of transactions in 7 (Q). The value of a bit
for a transaction is equal to 1, if the itemset P is a subset
of the transaction. Otherwise it is equal to zero. Thus, the
number of 1 bits is equal to the number of transactions in
T(Q) which project to P. The bitvectors are used in or-
der to keep the process of support counting more efficient
while reducing the number of times the database needs to
be projected.

5.3 Specialized Counting Techniques

An interesting property of the tree based approach is that
each node is a completely independent itemset generation
problem for a subset of the database and a subset of the
items. Therefore, the particular characteristics of the prob-
lem at different nodes can be exploited in order to develop
more effective counting techniques. Most of the nodes in the
lexicographic tree correspond to the lower levels. Thus, the
counting times at these levels account for most of the CPU
times of the algorithm. At these levels the database contains
only a small number of items. This is because E(P) is small
at the lower level nodes. For these levels, it is possible to
use a strategy called bucketing [2] in order to substantially
improve the counting times. The idea is to change the count-
ing technique at a node in the lexicographic tree, if |[E(P)|
is less than a certain value. In this case, an upper bound
on the number of distinct projected transactions is 2!F ()
Thus, for example, when |E(P)]is 9, then there are only 512
distinct projected transactions at the node P. Clearly, this
is because the projected database contains several repeti-
tions of the same (projected) transaction. The fact that the
number of distinct transactions in the projected database is
small can be exploited in order to yield substantially more
efficient counting algorithms. The aim is to count the sup-
port for the entire subtree rooted at P with a quick pass
through the data, and an additional postprocessing phase
which is independent of database size. The process of per-
forming bucket counting consists of two phases:

In the first phase, we count how many of each distinct
transaction are present in the projected database. This can
be accomplished easily by maintaining 2B phuckets or
counters, scanning the transactions one by one, and adding
counts to the buckets. The time for performing this set of
operations is linear in the number of (projected) database
transactions. In the second phase, we use the 2/F®)! trans-
action counts in order to determine the aggregate support
counts for each itemset. In general, the support count of
an itemset may be obtained by adding the counts of all the
supersets of that itemset to it. However, it is possible to be
more skillful in performing the second phase of this opera-
tion.

Consider a string composed of 0, 1, and *, which refers to an
itemset in which the positions with 0 and 1 are fixed to those
values (corresponding to presence or absence of items), while
a position with a * is a “don’t care”. Thus, all itemsets can
be expressed in terms of 1 and #, since itemsets are tradi-

SIGKDD Explorations.

tionally defined with respect to presence of items. Consider
for example, the case when |E(P)| = 4, and there are four
items, numbered {1, 2, 3,4}. An itemset containing items 2
and 4 is denoted by *1 1. We start off with the information
on 2* = 16 bitstrings which are composed of 0 and 1. These
represent all possible distinct transactions. The algorithm
aggregates the counts in |E(P)| iterations. The count for a
string with a “*” in a particular position may be obtained
by adding the counts for the strings with a 0 and 1 in those
positions. For example, the count for the string *1*1 may
be expressed as the sum of the counts of the strings 01*1
and 11*1.

The procedure works by starting with the counts of the 0-1
strings, and then converts them to strings with 1 and *. The
algorithm requires |E(P)| iterations. In the ith iteration, it
increases the counts of all those buckets with a 0 in the ith
bit, so that the count now corresponds to a case when that
bucket contains a * in that position. This can be achieved
by adding the counts of the buckets with a 0 in the ith
position to that of the bucket with a 1 in that position, with
all other bits having the same value. For example, the count
of the string 0*¥1* is obtained by adding the counts of the
buckets 001* and 011*. The process of adding the count of
the bucket j to that of the bucket j 4+ 2°~! achieves this.
The second phase of the bucketing operation requires |E(P)|
iterations, and each iteration requires 2!F(")! gperations.
Therefore, the total time required by the method is propor-
tional to 2!F®) . |E(P)|. When |E(P)| is sufficiently small,
the time required by the second phase of postprocessing is
small compared to the first phase, whereas the first phase
is essentially proportional to reading the database for the
current projection.

6. RELATED PROBLEMS

The depth-first techniques discussed in [2; 8] are almost two
orders of magnitude faster than the MazMiner algorithm
in terms of CPU efficiency. Therefore, there is consider-
able incentive in leveraging the techniques discussed in [2;
8] even for the case of disk resident databases. We note that
a method discussed in [20] divides a disk-resident database
into different main-memory partitions and then combines
the itemsets from the different partitions in order to generate
the final itemsets. However, the method in [20] is developed
for the case when the patterns are reasonably small, and
is focussed on finding all patterns rather than maximal pat-
terns only. For the case of finding maximal patterns in dense
databases, the problem of recombining the itemsets from dif-
ferent partitions becomes significantly more challenging. We
note that in the long pattern case, the post processing pro-
cedure of [20] becomes the bottleneck and cannot be used
directly. This is an interesting open problem which may be
explored in future work. It is clear that if each main memory
partition is large enough, then the set of maximal itemsets
from a given partition are likely to approximate the true
maximal itemsets very closely. In such a case, we conjecture
that it may be possible to efficiently determine the set of
maximal itemsets by using the information gained from the
different partitions.

An interesting direction of research for the dense case is to
find rules or patterns which satisfy user-specified constraints
[6]. It may often be the case that it is significantly more effi-
cient to find frequent patterns in dense databases, when the

Volume 3, Issue 1 - page 25

constraints are taken into account during the mining pro-
cess. An interesting approach in this direction for the dense
case is discussed in [6]. Another recent technique for con-
straint based data mining has been discussed in [15]. This
method is based on the FP-Tree technique and is likely to
work well for dense databases.

7. CONCLUSIONSAND SUMMARY

In this paper, we presented some of the recent tree based
algorithms which have been developed for mining long pat-
terns. These methods are combinatorial in nature and are
quite different from the level-wise techniques for the short-
pattern case. These techniques are based on databases in
main memory, but have potential for being extended to
larger disk-resident databases as well. We also discussed im-
portant variations of frequent pattern generation in which
user-specified constraints are allowed.

8. REFERENCES

[1] R. C. Agarwal, C. C. Aggarwal, V. V. V. Prasad. A Tree
Projection Algorithm for generation of frequent itemsets.
Journal on Parallel and Distributed Computing, Vol. 61,
No. 3, pp. 350-371, March 2001.

[2] R. C. Agarwal, C. C. Aggarwal, V. V. V. Prasad. Depth
First Generation of Long Patterns. Proceedings of the
ACM SIGKDD Conference, 2000.

[3] R. Agrawal, T. Imielinski, A. Swami. Mining Association
Rules between Sets of Items in Very Large Databases.
ACM SIGMOD Conference Proceedings, pages 207-216,
1993.

[4] R. Agrawal, R. Srikant. Fast Algorithms for Mining
Association Rules. VLDB Conference Proceedings, pages
487-499, 1994.

[5] R. J. Bayardo. Efficiently Mining Long Patterns from
Databases. ACM SIGMOD Conference Proceedings, pages
85-93, 1998.

[6] R. J. Bayardo, R. Agrawal, D. Gunopulos. Constraint-
Based Rule Mining in Large Dense Databases. ICDE Con-
ference Proceedings, 1999.

[7] S. Brin, R. Motwani, J. D. Ullman, S. Tsur. Dynamic
Itemset Counting and Implication Rules for Market Bas-
ket Data. ACM SIGMOD Conference Proceedings, 1997.

[8] D. Burdick, M. Calimlim, J. Gehrke. MAFIA: A
Maximal Frequent Itemset Algorithm for Transactional
Databases. Proceedings of the ICDE Conference, 2001.

[9] B. Dunkel, N. Soparkar. Data Organization and Access
for Efficient Data Mining. ICDE Conference Proceedings,
pages 522-529, 1999.

[10] D. Gunopulos, H. Mannila, S. Saluja. Discovering
All Most Specific Sentences by Randomized Algorithms.
ICDT Conference Proceedings, pages 215-229, 1997.

[11] J. Han, J. Pei, Y. Yin. Mining Frequent Patterns with-
out Candidate Generation. ACM SIGMOD Conference
Proceedings, pages 1-12, 2000.

SIGKDD Explorations.

[12] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal. Discover-
ing Frequent Closed Itemsets for Association Rules. ICDT
Conference Proceedings, 1999.

[13] J. Pei, J. Han, R. Mao. CLOSET: An Efficient Algo-
rithm for Mining Frequent Closed Itemsets. DMKD, 2000.

[14] J. Han, J. Pei, B. Mortazavi, Q. Chen, U. Dayal, M.-
C. Hsu. FreeSpan: Frequent Pattern-Projected Sequential
Pattern Mining. Proceedings of the ACM KDD Confer-
ence, 2000.

[15] J. Pei, J. Han, L. Lakshmanan. Mining Frequent Item-
sets with Convertible Constraints. Proceedings of the
ICDE Conference, 2001.

[16] D. Lin, Z. M. Kedem. Pincer-Search: A New Algorithm
for Discovering the Maximum Frequent Itemset. EDBT
Conference Proceedings, pages 105-119, 1998.

[17] H. Mannila, H. Toivonen, A. I. Verkamo. Efficient algo-
rithms for discovering association rules. AAAI Workshop
on KDD, 1994.

[18] I. Rigoutsos, A. Floratos. Combinatorial Pattern Dis-
covery in Biological Sequences. Bioinformatics, 14(1):
pages 55-67, 1998.

[19] R. Rymon. Search Through Systematic Set Enumer-
ation. International Conference on Principles of Knowl-
edge Representation and Reasoning, 1992.

[20] A. Savasere, E. Omiecinski, S. B. Navathe. An Effi-
cient Algorithm for Mining Association Rules in Large
Databases. VLDB Conference Proceedings, pages 432—
444, 1995.

[21] P. Shenoy et al. Turbo-charging Vertical Mining of
Large Databases. ACM SIGMOD Conference Proceed-
1ngs, 2000.

[22] H. Toivonen. Sampling Large Databases for Associa-
tion Rules. VLDB Conference Proceedings, pages 134-145,
1996.

[23] G. I. Webb. OPUS: An efficient admissible algorithm
for unordered search. Journal of Artificial Intelligence Re-
search, 3:45-83, 1996.

[24] M. J. Zaki. Scalable Algorithms for Association Rule
Mining. IEEE TKDE Journal, 12(3), pp. 372-390,
May/June 2000.

[25] M. J. Zaki. Generating non-redundant association rules.
Proceedings of the ACM SIGKDD Conference, 2000.

[26] M. J. Zaki, C. Hsiao. CHARM: An Efficient Algorithm
for Closed Association Rule Mininf. Technical Report,
RPI, 1999.

[27] M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li. New
Algorithms for Fast Discovery of Association Rules. KDD
Conference Proceedings, pages 283-286, 1997.

Volume 3, Issue 1 - page 26

