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ABSTRACT

In this paper we (1) describe state-of-the-art methods to identify
clusters in DNA sequence data for taxonomic analysis; (2)
describe a new method with better scaling properties based on
model-based clustering, and (3) present examples using the
nucleoprotein and hemagglutin regions of influenza and the env
and gag regions of human immunodeficiency virus (HIV).
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1. INTRODUCTION and BACKGROUND

The effort to detect, describe, and explain biological diversity is
known as systematics [33]. Taxonomy falls within the systematics
discipline and concentrates on identifying groups such as species
(which are reproductively isolated) or subspecies. In the cases we
consider here, groups are defined via evolutionary relationships.
Evolutionary trees display inferred evolutionary relationships and
often exhibit clusters of distinct groups. These groups could for
example be species, subspecies, or in our applications here, are
subtypes of virus. A common way for such groups to arise is
geographic and/or temporal isolation in conjunction with
evolutionary processes. Phylogenesis is defined as evolution
within a species together with speciation processes. Strictly
speaking, phylogenetic trees (such as in Fig. la) should include
speciation events, but we will follow common usage [33] and
refer to any tree that depicts evolutionary relationships as a
phylogenetic tree. For example, Fig. la is a phylogenetic tree of
influenza strains that have evolved within three distinct hosts
(human, swine, and avian).

Many genetic data types are available for taxonomic analysis. For
example, restriction fragment length data is available when
deoxyribonucleic acid (DNA) is digested with restriction enzymes
and DNA-DNA hybridization data is available as temperatures at
which the double-stranded DNA separates. DNA sequence data
consisting of A, C, T, or G base pairs (or the associated amino
acid sequence data) is increasingly available and is generally
believed to provide the most information about evolutionary
histories. Here, we consider only DNA sequence data and our
examples involve identifying subtypes of viruses (influenza or
HIV). However, we emphasize that the clustering techniques we
present are more widely applicable.

Identifying and characterizing viral subtypes is useful for
theoretical and applied purposes. Theoretical purposes include
(1) inferring aspects of the evolutionary history that led to the
subtypes; (2) evaluating the molecular basis for differences in
subtype behavior, including transmissibility; and (3) predicting
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future trends. In category (1), [3] evaluates how many subtypes
can emerge under several models of HIV evolution and whether
the subtypes of HIV could be explained by the known past
population dynamics of the virus. In category (2), for HIV, a
relationship between subtype and natural resistance against
antiretroviral drugs as well as between subtypes and the efficiency
of serological and molecular tests for HIV have been observed
[17]. The degree to which vaccines based on one subtype will
provide protection against other subtypes is not yet well
understood. Regarding (3), it is believed that current temporal and
geographic patterns in the distribution of genetic subtypes can
help to forecast growth rates of the overall epidemic. Applied
purposes include identifying subtypes as a simple yet effective
summary of the phylogenetic tree and identifying simple signature
patterns [5, 22, 27] that distinguish each subtype so that rapid
screening studies of the prevalence of each subtype need not build
computationally intensive phylogenetic trees each time new HIV
samples are available, but instead, the subtype of a sample can be
identified by comparing it to the signature of each subtype.

Although cluster analysis is used for many purposes in the
analysis of DNA sequence data, our focus is identifying groups
for taxonomic analysis. Our goals are to define genetic subtypes,
and to associate genetic variation or subtypes with geographic,
temporal, or species information. In this paper we (1) describe
methods that are in current use to identify clusters in DNA
sequence data; (2) introduce a new method based on model-based
clustering that has the potential to accommodate larger numbers
of sequences, and (3) present examples using simulated and real
DNA data. The paper includes a survey of several current
phylogenetic tree-based clustering methods so that the new
method can be compared to existing methods. Section 2 provides
examples using influenza data. Section 3 describes how to define
genetic distances based on an evolutionary model, with more
detail given in the Appendix. Section 4 describes existing cluster
analysis methods with bootstrap resampling to assess confidence
in the chosen number of clusters. Section 5 introduces our new
application of model-based clustering applied to a
multidimensional scaling of the genetic distance data. Section 6
presents an example of model-based clustering using the
nucleoprotein (NP) and hemagglutinin (HA) regions of influenza
virus and another example using the env and gag regions of HIV-
1, group M (all sequence data is available [36]). Section 7
discusses scalability issues. Section 8 is a summary and indicates
directions for future research.

2. EXAMPLES

Cluster analysis is frequently applied to DNA data. For example,
Figure la is an unrooted phylogenetic tree of influenza (NP
region) sequences from 3 host species (human, swine, avian)
constructed by a computationally demanding maximum likelihood
(ML) algorithm that is commonly used for data sets with small
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numbers (less than 100) of sequences [9, 10]. Although it is
usually assumed that the sequences evolved from a common
ancestor, the location of the ancestor in the tree can be left
unspecified, in which case the tree is unrooted and the direction of
increasing time is left unspecified. Sometimes a distant taxa
sequence can be used to locate the tree’s root (the position of the
most recent common ancestor, MRCA), in which case time
increases as the tree is traversed outward from the root. For
example, Figure 1b is a rooted tree of a subset of the sequences
used in Figure la. These trees are intended to convey information
about the genealogy of these influenza viruses. Because the
evolutionary process includes random events, there is no
guarantee that “closer in genetic distance” implies “closer in
Fig. 1a. Unrooted tree of 85 sequences of the nucleoprotein

region of the influenza virus. Several “wrong host” sequences are
the result of cross-species transmissions. Generally, the Swine (S)
and Human (H) “clusters” are closer to each other than to Avian

(A).

Al

Fig. 1b. Rooted tree of a subset (21) of the 85 sequences from
Fig. la with 7 sequences from each of A, H, and S hosts.
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time,” for every pair of influenza sequences. For example, from
Figure 2 we note that some 1996 human-host influenza (HA
region) sequences are more similar to some 1995 sequences than
they are to other 1996 sequences. However, the tree in Figure 2 is
rooted using a 1968 sequence and a pattern is evident in this
rooted tree: generally, there is a drift away from the 1968
sequence.

3. GENETIC DISTANCES AND
EVOLUTIONARY MODELS

It is well known that cluster analysis results can depend strongly
on the metric. There are at least three notable metric-related
features of DNA data. First, the DNA data is categorical. Second,
modern phylogenetic analysis of DNA data includes choosing the
evolutionary model using goodness of fit or likelihood ratio tests
[18]. For nearly all of the currently used evolutionary models,
there is an associated distance measure. Therefore, there is the
potential to make an objective metric choice. Third, the
evolutionary model is likely to depend on the region of the
genome. Coding regions (genes) are often more constrained due
to selective pressure and therefore are expected to be more
conserved over time (have a smaller rate of change) than non-
coding regions.

Our data is assumed to be n mutually aligned DNA sequences of
(typically) hundreds to a few thousand sites. Each site is either an
A, C, T, or G representing one of the 4 DNA bases. As an
important aside, evolutionary processes sometimes lead to base
insertions or deletions (known as indels) so that not all taxa have
the same number of base sites. Alignment is a crucial step [33] in
which gaps are inserted where DNA indel evolutionary events are
inferred. One method for aligning two or more sequences was
developed by Needleman and Wunsch [28] that applies a dynamic
programming method to a matrix plot in which every nucleotide
in one sequence is compared to every nucleotide in all other
sequences to find the alignment with the fewest gaps and
substitutions. Alignment introduces a possible error source (that is
typically ignored) which we do not consider. Distance measures
between taxa usually consider only those aligned sites, assumed to
have arisen from a common ancestor, for which all taxa have a
base pair rather than an alignment character. That is, sites having
one or more indels are nearly always removed from the analysis,
as we do here.

The most basic model of the data generating process assumes that
all mutation events (A to C, A to T, etc.) are equally likely. More
realistic models weight the event probabilities by their inferred
frequency of occurrence. Because of “convergent evolution” all
distance measures eventually saturate at approximately 25%
mismatch between any two sequences. An example of convergent
evolution is at time t; sequence 1 having an A at site i and
sequence 2 having a C at site i, but at a later time tp, both
sequences having an A at site i. An evolutionary model should
specify the probability per unit time of a substitution from A to C,
A to G, etc. in a 4-by-4 substitution probability matrix P. Readers
who are interested in the details are referred to the Appendix.
Results presented here use either the HKYS or GTR models,
which are described in the Appendix.

Because of the trend toward using the most realistic feasible
evolutionary model and the fact that most models have an
associated distance measure, distance-based clustering methods
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are natural candidates for taxonomic analysis. Another candidate
involves using maximum likelihood plus a resampling scheme
such as the bootstrap as we describe next.

Fig. 2. Rooted tree of the hemagglutinin region of the influenza
virus. The isolation year is the first two digits and with a sequence
identification given in the last digit.

4. CLUSTERING METHODS

Any of the typical clustering methods could be applied to DNA
data, but some are more suited than others, particularly because of
the categorical nature (A, C, T, or G) of the data. We will describe
maximum likelihood, hierarchical, kmeans, and model-based
clustering in this section. We emphasize throughout that an
evolutionary model chosen from goodness of fit or likelihood
ratio methods should provide the most defensible basis for
selecting the model. Candidate clustering methods should
incorporate the chosen model.

4.1 Maximum Likelihood Plus Bootstrap

The substitution probability matrix P leads to a likelihood [9] for
each candidate topology (branching order or genealogy of the
sample sequences). For example, at site i with an assumed
ancestor site of C, the probability (as a function of branch length)
of obtaining the observed values for each taxa can be evaluated
and therefore can be maximized for a given topology with respect
to branch lengths. The topology with the highest maximum (over
branch lengths) among all candidate topologies is the maximum
likelihood topology for that site. Assuming that sites evolve
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independently, this procedure can be combined over all sites to
find a global maximum. The “molecular clock™ hypothesis states
that the evolutionary rate [ does not vary across sequences
(branches in the tree). But this hypothesis is sometimes rejected in
likelihood ratio tests in which case likelihood-based methods
produce tree estimates with unequal branch lengths as measured
from a root position. Regardless of whether the clock assumption
is imposed, software is available (see [33] for a partial listing and
PAUP [34] is one example) to find a local maximum likelihood
branching order. The number of possible rooted topologies N is
approximately factorial in the number of sequences n
n-1
(N =[] 2k—1), and the number of unrooted topologies is the
k=1

same but with n — 1 replacing n. Therefore, for approximately 15
or more sequences, it is not feasible to find the global maximum
likelihood topology. Instead, heuristic search methods to find a
good tree are used. More recently, stochastic searches [30] and
Bayesian posterior probability (via Markov Chain Monte Carlo)
[25,31] approaches have been implemented. All of these methods
have merit but are computationally intensive and do not lead to a
fully automated way to choose the number of clusters. Usually,
the human eye is used to identify clusters in the phylogenetic tree
and a resampling scheme such as the bootstrap [7] is used to
assess confidence in the chosen clusters. The typical
implementation of the bootstrap is to resample the sites (columns
of DNA data) with replacement to generate bootstrap samples
which are treated the same as the original data. Then, for any
cluster that is specified by the user, the bootstrap implementation
will report how many bootstrap samples maintained that
prespecified cluster as being “monophyletic.” Monophyletic
means that all cluster members clustered before any non-cluster
member. We gave an example with 3 clusters (S, H, and A hosts)
in Figure 1b. The number (out of 100) of bootstrap samples that
supported the stated clusters was 100, and 1000 of 1000 trees
sampled from the posterior distribution (estimated via BAMBE
[31]) supported the expected clusters. Similarly, when 8 of the
1993 and 8 of the 1996 influenza sequences (hemagglutinin
region) were selected from the sequences shown in Figure 2, ML
+ bootstrap, BAMBE, and a neighbor-joining + bootstrap method
all gave very high support (97 percent or higher) to the expected
clusters [4]. This indicates that a 3-year gap is sufficient to define
a clear “time signature” for this region of the influenza genome.
Clearly, maximum likelihood plus bootstrap (“ML + bootstrap™)
or Bayesian methods are defensible but computationally
demanding methods. That is why we applied these methods to
relatively small subsets of the data in the examples above.

A recent application of clustering in the context of choosing the
number of subtypes of HIV-1, group M required a more
automated method (such as model-based clustering) of choosing
the number of clusters [3]. We believe that model-based
clustering should be useful in other applications.

4.1 Hierarchical Clustering

Hierarchical clustering is one less computationally demanding
alternative to the *“ ML + bootstrap™ approach. The input is an n-
by-n symmetric matrix of all pairwise distances computed under
the chosen metric. The tree begins with each sequence as its own
cluster and the sequences are merged successively until all
sequences form one cluster. Figure 1b and Figure 2 are examples
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of a neighbor joining method [33], which is a specialized type of
hierarchical clustering. The choice of how many clusters could be
made by appealing to any of several subjective criteria, including
those used by the human eye.

4.2 Kmeans Clustering

Kmeans clustering [19] could be applied to the data if the data (A,
C, T, and G) were coded so that distances could be computed. The
most defensible way to do this that we are aware of is to represent
the pairwise distance data via multidimensional scaling.
Multidimensional scaling [35] represents the data in new
coordinates such that distances computed in the new coordinates
very closely approximate the original distances computed using
the chosen metric. For n sequences with an n-by-n distance
matrix, the result of multidimensional scaling is an n-by-p matrix
(p coordinates) that can be used to closely approximate the
original distances. Therefore, multidimensional scaling provides a
type of data compression with the new coordinates being suitable
for input to kmeans or model-based clustering. We use the
cmdscale function in Splus5.1 [32] to implement classical
multidimensional scaling. The implementation of model-based
clustering that we consider includes kmeans as a special case as
we describe in the next subsection. Model-based clustering is the
new more-scaleable alternative that has several attractive features.

4.3 Model-based Clustering

In model-based clustering, it is assumed that the data are
generated by a mixture of probability distributions in which each
component of the mixture represents a cluster. Given n p-
dimensional observations X = (X1,Xs,...,Xn), assume there are G
clusters and let fi(x|Bx) be the probability density for cluster k.
The model for the composite of clusters is typically formulated in
one of two ways. The classification likelihood approach
maximizes

Lc(®1,---06:Y1,-- oY 1 X) = T fi(Xi 1 6y3),

where the V; are discrete labels satisfying y; = K if X; belongs to
cluster k. The mixture likelihood approach maximizes

Lm(0,...0611,.... T 1 X) = ;2 Tfe(Xi 1 6)),
where Ty is the probability that an observation belongs to cluster K.

Fraley and Raftery describe their latest version of model-based
clustering in [11] where the f are assumed to be multivariate
Gaussian with mean y and covariance matrix X,. Banfield and
Raftery [1] developed a model-based framework by
parameterizing the covariance matrix in terms of its eigenvalue
decomposition in the form 2= A DADy", where Dy is the
orthonormal matrix of eigenvectors, Ay is a diagonal matrix with
elements proportional to the eigenvalues of X and Ay is a scalar,
and under one convention is the largest eigenvalue of Z. The
orientation of cluster K is determined by Dy, A determines the
shape, while A specifies the volume. Each of the volume, shape,
and orientation (VSO) can be variable among groups, or fixed at
one value for all groups. One advantage of the mixture-model
approach is that it allows the use of approximate Bayes factors to
compare models, giving a means of selecting the model
parameterization (which of V, S, and O are variable among
groups) and the number of clusters. The Bayes factor [1] is the
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posterior odds for one model against another model assuming that
neither model is favored a priori (uniform prior). When the EM
algorithm (estimation-maximum likelihood [6]) is used to find the
maximum mixture likelihood, the most reliable approximation to
twice the log Bayes factor (called the Bayesian Information

Criterion, BIC) is BIC = 2l (x,6)—my log(n), where

Im (X é) is the maximized mixture loglikelihood for the model

and My, is the number of independent parameters to be estimated

in the model. A convention for calibrating BIC differences is that
differences less than 2 correspond to weak evidence, differences
between 2 and 6 are positive evidence, differences between 6 and
10 are strong evidence, and differences more than 10 are very
strong evidence [20].

We give an example in Figure 3 of the performance of emclust
(available from www.stat.washington.edu/fraley for use in Splus)
on simulated multivariate Gaussian data with n = 30 observations
in each of 3 groups and p = 2 variables. The correct model is
model 4 which is denoted VVV (varying volume, shape, and
orientation). We are presently doing a more extensive evaluation
of emclust for simulated Gaussian data, and evaluating emclust on
simulated data from nonGaussian distributions with a catch-all
“noise cluster” [1].
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Fig. 3. Evaluation of emclust for a simulated data set of 30
observations from each of 3 clusters (labeled 1, 2, 3 in top plot)
with true model VVV denoting that the volume, shape (defined as
the ratio R of largest to smallest eigenvalue in the p = 2 case), and
orientation all vary among clusters. The BIC correctly chooses 3
clusters and the VVV model 4 with model 6 (VEV) a close
second. The VEV model has varying volume, equal shape, and
varying orientation among clusters.
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5. MODEL-BASED CLUSTERING
EXAMPLES

5.1 Influenza Data

Here we return to the examples presented in Section 2. We
anticipate host-specific signatures for NP and time-specific
signatures for HA Figure 4a is the principle coordinate
representation of the pairwise distances (distances computed using
the HKYS model) of 21 of the NP sequences (7 each of H, A, and
S). Informally, we observe 3 clusters, or perhaps 4 because of an
apparent subcluster among the S. Figure 4b is the BIC calculated
from emclust. Figure 5a is the principle coordinate representation
of the pairwise distances (distances computed using the HKYS
model) of 8 of the 1993 HA sequences and 8 of the 1996
sequences (“3” denotes the 1993 sequences and “6” denotes the
1996 sequences). Figure 5b is the BIC calculated from emclust.
The BIC is not evaluated for any model with insufficient number
of observations in a cluster or numerical instability in the
estimated covariance matrix. For example, model 4 is not
evaluated with 5 clusters in Figure 5. The “correct” number of
clusters is arguably 2 or 4 in the collection of 8 1993 and 8 1996
HA sequences. Figure 6 provides a possible explanation for the 2
subclusters in the 1993 sequences. One subcluster went extinct
and the other has existing lineages in 1996.
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Fig. 4. (Top) Principle coordinate plot of 21 pairwise distances
(computed with HKY5 model) of the data from Fig 1b. (Bottom)
Result of emclust applied to the principle coordinates in the top
plot, suggesting 4 clusters (S has an apparent subcluster).
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Fig. 5. (Top) Principle coordinate plot of 16 pairwise distances
(computed with HKYS5 model) of the data from Figure 2.
(Bottom) Result of emclust applied to the principle coordinates in
the top plot, suggesting 4 clusters (1993 and 1996 each have
apparent subclusters).
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Fig. 6. Principal coordinate plot (distances via HKY-5 model) of
79 HA genes from 1985 to 1996 (1968 case omitted). The digit is
the year with the 1980 decade in darker type than 1990 (left-most
case is 5 = 1985). The eight 1993 cases separate into a “close to
1996 subgroup (surviving lineage?) and a “far from 1996
(extinct lineage?) subgroup so the “correct” number of clusters is
not necessarily two.
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5.2 HIV Data

Here we introduce HIV data from the gag-pl7 and env-gp120
regions of the HIV genome. The main HIV epidemic is caused by
HIV-1, group M which currently has approximately 10 subtypes
[13,16,27]. It is well known that some regions of the HIV genome
are more conserved (have smaller genetic distance for the same
time separating the sequences) than others, so subtype definitions
can depend on the region of the genome. Another important
feature of HIV evolution is recombination which could, for
example, cause a sequence to have subtype A for the gag region
and subtype E for the env region (as in the “Thailand AE
sequences”). For this example, we have excluded all obvious
inter-subtype recombinants (as outliers) and we consider both the

gag-pl7 (more conserved) and the env-gp/20 (less conserved)
regions of the genome.

5.2.1 Data

We selected n = 95 env sequences and n = 88 gag sequences.
Some of the sequences have known isolation times and all have
been subtyped using many methods, including ML + bootstrap.

The ML + bootstrap approach suggests 7 clusters (subtypes) in the
env sequences and 6 clusters (subtypes) in the gag sequences. The
data is available at hiv-web.lanl.gov [36] and accession numbers
are available upon request.

5.2.2 Evolutionary Model

We used PAUP [34] to estimate the substitution rate | (section 4
and appendix), 5 relative rate parameters, 3 relative frequencies,
and the rate heterogeneity parameter in a GTR. The main two
summary parameters of the model are P and Yy, which were
estimated to be 0.0026 and 0.45 for gag and 0.0035 and 0.40 for
env. Our selected model agrees very closely with published
models [23, 24] for slightly different subregions of the gag and
env egions, which provides increasing confidence that our model
estimate is close to the best model for the gag-p17 and env-gp120
regions.

5.2.3 Evolutionary Distances

The evolutionary distances between each pair of sequences were
computed using PAUP from the chosen model as described in
sections 3, 4, and the appendix.

5.2.4 Modd-based Clustering
We applied the cmdscale function in Splus5.1 [32] to implement

n
classical multidimensional scaling [35] of the (2] pairwise

distances in a matrix Dyyigina for each of the gag and env regions.
There is a choice of the number of principal coordinates (similar
to principal components) [19,35] to use to recover the original
distance matrix. This choice can be objectively made by
evaluating the distance between the original and approximate
distance matrices. For each candidate number of principle

n
coordinates, we compute the [2] pairwise distances as Dypprox

and compute Dt = Dypprox = Dorigina. (Or @ scaled version where
each difference is rescaled by Dgggina [35]). As we increase the
number of coordinates we find the cluster number above which
the decrease in Dy becomes less than some predetermined
threshold. We typically retain 2 to 10 coordinates using this
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strategy. Assume we have retained 3 principal coordinates. These
3 coordinates become the input to emclust to find the suggested
number of clusters and the model parameterization. Example
results (plotting only the first 2 of 10 principle coordinates) are
given in Figure 7 for env (BIC peaks at 6 clusters, tending to
merge subtypes B and D compared to the ML approach) and
Figure 8 for gag (BIC peaks at 6 clusters, agreeing with the ML

approach).

6. SCALING TO MORE SEQUENCES OR
MANY DATA SETS

We envision at least two types of scaling that would be of
practical interest. First, we recently evaluated [3] the number of
clusters that are produced from many repeated simulations of each
of several models of how HIV is evolving (with respect to
classical epidemiology in terms of the numbers of new cases and
with respect to molecular epidemiology in terms of substitution
rates). Using “ML + bootstrap” would have required human
interaction with the simulated sequences from each run to choose
the number of clusters, so the human time cost would have been
prohibitive. Model-based clustering is more amenable to objective
automation for this application. Second, we envision applications
of a single clustering of n sequences where n is very large (10,000
or more). No distance-based clustering scheme can scale well for
very large numbers of sequences n. Recall that we must
incorporate the evolutionary model and to do so requires that we
work with the joint likelihood in the ML approach or with the
matrix of pairwise distances. We have focused here on the
pairwise distances approach followed by multidimensional scaling
so that model-based clustering can operate on a low dimensional
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Fig. 7. Env Data. (Top) Hierarchical Clustering; (Middle)
Principle Coordinate plot; (Bottom) Results of emclust.

Volume 3, Issue 1 —page 38



00 02 04

= EEEELEEEEE A o B_
° Gg GAA”& AAAAA B B@%ED
o © e ¢
o [3 FoE £ F
N F
< e e
-0.2 -0.1 0.0 0.1 0.2
x1
o
“O-5_.5] 1El F=d==3—3
3 2Vl [5-5_ g
08 - =55
s - i =
o —~ 5 EE
S =" B6VE
5 10 15 20

number of clusters

Fig. 8. Gag data. (Top) Hierarchical Clustering; (Middle)
Principle Coordinate plot; (Bottom) Results of emclust.

representation that can approximately recover the original
distance matrix. We used cmdscale in Splus, but a faster
alternative is FASTMAP [8]. Given some type of
multidimensional scaling in low dimensions (two to ten usually)
we have illustrated the application of emclust. The emclust
implementation of model-based clustering in Splus [32] calls
Fortran routines that implement the EM algorithm which can be
slow to converge especially for marginally well separated clusters.
Perhaps the approach by Moore [26] would lead to a faster
implementation. Also, we recognize that the output of some type
of multidimensional scaling could also be input to any of the
relatively fast algorithms that allow for variable-shaped clusters,
such as BIRCH [37], CURE [14], or CLARANS [29], provided
they use a criterion such as the BIC to suggest the number of
clusters. Reference [2] provides a good review of some general
issues to consider regarding scalability of clustering methods.

Fortunately, for the application of choosing the number of clusters
in DNA data, we normally can appeal to statistical sampling
theory in conjunction with ideas from coalescent theory [21] to

argue that the estimated number of clusters G increases as N

increases up to some limit, and then G saturates for large n.
Therefore, there is no need to perform cluster analysis using
extremely large numbers of sequences N. Whether this saturation

effect actually occurs can easily be objectively measured by

tracking the behavior of the estimated number of clusters G as n
increases. We show an example in Figure 9. Figure 9 shows the

estimated number of clusters G in data simulated from a simple
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coalescent model for n =100 (left column) and n = 500 (right
column) sequences. Note that G is approximately 5 for both

n =100 and n = 500. The coalescent model specifies how each
new generation of HIV cases is produced from the previous
generation, and we use an implementation of coalescent theory
(Treevolve in [13], available at website [36]) to infer typical
sample genealogies and the commensurate DNA data. For real
data, we take the same approach by first clustering with n = 50,

n = 60, n = 70, etc. until the estimated number of clusters
stabilizes at some constant value.

In cases where geographic and/or temporal separation of
sequences leads to “subtypes,” there could be substantial genetic
theory required to design the appropriate statistical sampling plan.
If the estimated number of clusters fails to stabilize, we would
accept that as empirical evidence that the clustering did not scale
well, and perhaps a suitable “subtype” definition is not available.

Finally, in situations where we have demonstrated that there is a
stable number of estimated clusters as n increases, we note that in
many cases there will be relatively simple methods to: (1) assign a
“cluster signature” to each cluster; and (2) assign new sequences
to the appropriate cluster via a ‘“supervised learning” effort.
Several “signature patterns” have been compared, each with good
success in certain applications [5]. Usually a straightforward
empirical comparison of the performance of candidate signature
pattern methods on held-out test sequences can be used to choose
a signature pattern method. One successful method (VESPA, or
viral epidemiology signature pattern analysis) searches for sites
that are strongly conserved within a cluster, but not outside that
cluster [5, 22]. To find signature sites for group 1, VESPA
searches for sites for which group 1 has high relative frequency
(Pmin = -8 is the default value) of a given nucleotide and the non-
group 1 sequences have low relative frequency (pmax = .2 is the
default value). The same process is repeated to find signatures for
all groups. There is no guarantee of finding any signature sites,
but clearly, the more we find with strict pyin and pmax values, the
better the group separation. Test sequences are assigned to the
group having the highest percent agreement between the group’s
signature site values and the test sequence values at the signature
sites. The parameters pmin and pma can be selected on the basis of
performance on training data at separating the groups. Less formal
procedures are also sometimes useful. For example, [12] manually
reviewed aligned influenza sequences to discover host-specific
clusters.

To summarize the scalability issue, we do not envision a way for
“ML + bootstrap” to scale well to repeated application for the
same small or moderate number of sequences Nn. Model-based
clustering appears to have a role in this type of problem regardless
of whether the bootstrap is included (emclust + bootstrap scales
better than ML + bootstrap). In a single application with large n,
no method will work directly. It will be necessary to start with
small to moderate n and apply model-based clustering (or a more
manual ML + bootstrap) for each of several values of n as n
increases. Presumably, ML + bootstrap will continue to be the
“gold standard” as the most defensible method of semi-manually
choosing the number of clusters. Even in the cases where a large
careful effort is appropriate for each case considered (so that

ML + bootstrap is appropriate), we believe that model-based
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Fig. 9. Example of the impact of increasing n. (Left column) n =
100, (Right column) n = 500. The estimated number of clusters
G is approximately 5 in both cases.

clustering would add valuable complementary support for the
chosen number of clusters. In cases where many simulated or real
data sets are evaluated, model-based clustering (perhaps with the
bootstrap) could defensibly be chosen as a convenient way to
automate high-throughput screening of the apparent number of
clusters in each data set.

7. SUMMARY

There will always be a subjective element in any cluster analysis.
Nevertheless, current implementations of model-based clustering
have demonstrated good results with simulated and real data and
we believe that model-based clustering has great potential for
choosing the number of subtypes in genetic data. A truly novel
ability of emclust is its ability to apply the BIC to choose the
number of clusters and the model parameterization.

Because we rely on first computing the distance matrix of all
pairwise distances, an exception is any case where the best
evolutionary model is too complex to allow a defensible distance
measure to be defined. To date, we are unaware of any real data
set for which there is a compelling reason to work with a model
that does not allow a commensurate distance measure. Future
work should address the robustness of current implementations of
model-based clustering to non-Gaussian data, include more
evaluations of the clustering results in simulated data with various
degrees of cluster separation and sample sizes, and compare
model-based clustering results to results using ML + bootstrap.
The BIC is established as a good criterion for choosing the
number of clusters, but there are others, such as the Akaike’s
information criterion (AIC). The AIC tends to overestimate the
number of clusters. Therefore, in cases where the BIC tends to
underestimate the number of clusters, it might be possible to claim
that with high probability, the AIC-based result is an upper bound
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while the BIC-based result is a lower bound. Finally, methods to
combine clustering results over different regions of the genome in
cases where no recombination has occurred are of interest.
Distance-based methods could compute an average distance
matrix over all regions of the genome that could be input to
model-based clustering. The alternative is to somehow combine
clustering results from each genome region, which is less
straightforward.
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Appendix. EVOLUTIONARY MODELS AND
ASSOCIATED GENETIC DISTANCES

Consider a pair of aligned sequences denoted X and Y. Define Fyy
as
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N is the number of base pairs (sites) and nj is the number of sites
where sequence X has base i and sequence Y has base j. The most
general time-reversible model (GTR) for which a distance
measure has been defined [33] defines the distance between
sequences X and Yy as dy, = -trace{I log(l'l'lFXy)} where I is a
diagonal matrix of the average base frequencies in sequences X
and y. The GTR is fully specified by 5 relative rate parameters (a,
b, ¢, d, e) and 3 relative frequency parameters (Tly, T, and Tig with
T determined via Th+ T + T + T = 1) in the rate matrix Q
defined as (each row of Q sums to zero and f=1 by convention)
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W is the overall substitution rate. The rate matrix Q is related to
the substitution probability matrix P via Py(t) = e where P;(t) is
the probability of a change from nucleotide i to j in time t and
Pyj(t) satisfies the time reversibility and stationarity criteria: T{P; =
T;P;i. Commonly used models such as Jukes-Cantor assumes that

a=b=c=d=e=1and Ty = T = T = T = 0.25. For the
Jukes-Cantor model, it follows that P;(t) = 0.25 + 0.75¢™ and that
the distance between sequences X and y is —3/4 log(l - 4/3D)
where D is the percentage of sites where X and Yy differ (regardless
of what kind of difference because all relative substitution rates
and base frequencies are assumed to be equal). Another common
model is the HKYS model (Hasegawa et al [15, 31]) with unequal
base frequencies and different rates for transitions from purine to
purine (A and G are purines) or from pyrimidines to pyrimidines
(C and T are pyrimidines) than for transversions between purine
and pyrimidine or vice versa. Another important generalization is
to allow the rate P to vary across DNA sites. Allowing for hot
(higher M) and cold (lower M) sites via a gamma-distributed rate

SIGKDD Explorations.

parameter [ is one way to model the fact that “silent” and
“replacement” sites often have different observed rates. A silent
mutation does not alter the amino acid for which the DNA is
coding, and usually occurs at the third site because of the nature
of the redundancy in the amino acid code. If the rate P is assumed
to follow a gamma distribution with shape parameter Yy then these
“gamma distances” can be obtained from the original distances by
replacing the function log(X) with y(l-X'lly) in the formula

Oy = -trace{ M log(T*Fy)} [33].

For sequences having small to moderate percent difference D, if
the correct model is chosen, the expected distance will increase
linearly with time. However, rate heterogeneity and the fact that
multiple substitutions at the same site tend to saturate any distance
measure make it a practical challenge to find the correct metric
such that the distance between any two sequences increases
linearly with time.

It is possible to generalize further by relaxing the time
reversibility assumption and use “log-determinant”
transformations that remain ‘“‘additive” under a wider set of
models [33]. An additive distance satisfies the rule that the
expected distance between each pair of sequences is equal to the
sum of the lengths of each branch on the path connecting the
sequences (and hence is an ultrametric [33]). Nearly all published
analyses assume the GTR or GTR + rate heterogeneity models or
a special case of these. The most general model we consider here
is GTR + rate heterogeneity. A known weakness of all such
models is that they assume each site evolves independently. There
have been a few attempts to relax this site-by-site independence
assumption, but computational and data demands have not
permitted significant progress toward relaxing the assumption.

Another important fact regarding cluster analysis of DNA data is
that different regions of the genome might give different cluster
results. We consider this to be an important topic that deserves
more attention than space permits here. For our purposes, we will
consider only one region at a time, or assume that an average
distance matrix has been derived by combining distances based on
different regions of the genome. An important issue is whether
recombination could have led to a situation in which the true
genealogy of the sampled sequences depends on the region of the
genome. We assume here that there is no recombination so that
there is only one true genealogy for all regions of the genome.

Because of the trend toward using the most realistic feasible
evolutionary model and the fact that most models have an
associated distance measure, distance-based clustering methods
are appropriate for our intended applications. Another candidate
involves using maximum likelihood plus a resampling scheme
such as the bootstrap as we describe in Section 4.
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