Towards Effective and Interpretable Data Mining by Visual
Interaction

Charu C. Aggarwal
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

charu@us.ibm.com

ABSTRACT

The primary aim of most data mining algorithms is to fa-
cilitate the discovery of concise and interpretable informa-
tion from large amounts of data. However, many of the
current formalizations of data mining algorithms have not
quite reached this goal. One of the reasons for this is that
the focus on using purely automated techniques has imposed
several constraints on data mining algorithms. For example,
any data mining problem such as clustering or association
rules requires the specification of particular problem formu-
lations, objective functions, and parameters. Such systems
fail to take the user’s needs into account very effectively.
This makes it necessary to keep the user in the loop in a
way which is both efficient and interpretable. One unique
way of achieving this is by leveraging human visual percep-
tions on intermediate data mining results. Such a system
combines the computational power of a computer and the
intuitive abilities of a human to provide solutions which can-
not be achieved by either. This paper will discuss a number
of recent approaches to several data mining algorithms along
these lines.

1. INTRODUCTION

Typical data mining tasks often involve massive amounts
of computation on large data sets using particular formu-
lations and models. In many cases, these formulations and
models are not sufficiently sensitive to user needs. As a
result, the final results may often differ considerably from
the original intentions of the user. For example, in the case
of the clustering problem, even the choice of the objective
function and input parameters can have significant qualita-
tive implications on the final results. It is not easy to create
formalizations and make parametric choices which result in
the most intuitive sets of clusters.

In recent years, the importance of incorporating human in-
teraction into several data mining problems has been well
understood and appreciated [3; 10; 16; 18; 23; 24; 28; 34].
Many tools have recently been proposed for interactive clus-
tering and nearest neighbor search [3; 5; 15; 26; 27; 29; 34].
The importance of human interaction in data mining algo-
rithms process arises from the ability of a user to make in-
tuitive judgements that are outside the capabilities of fully
automated systems. Simply speaking, a computer cannot
match the visual insight, understanding and intuition of a

SIGKDD Explorations.

human in distinguishing useful patterns in the data. On the
other hand, a human needs computational support in order
to determine effective summaries of the data which can be
used to derive this intuition and understanding. Therefore,
a natural strategy would be to devise a system which is cen-
tered around a human-computer interactive process. In such
a system, the particular data mining task can be divided be-
tween the human and the computer in such a way that each
entity performs the task that it is most well suited to. The
active participation of the user has the additional advantage
that he has a better understanding of the final results.

In this paper, we will illustrate the power of visual inter-
active data mining problems on the clustering and nearest
neighbor problems. The advantages of visual interaction lie
in their natural appeal to the intuitive abilities of the human.
However, in most cases, it requires considerable amount of
computational analysis to design the exact nature of the vi-
sual feedback which is most helpful to the user. This paper
will also discuss some of these issues including interpretabil-
ity and enhanced data understanding.

This paper is organized as follows. In the next section, we
will discuss visual algorithms for clustering. In section 3,
we will discuss interactive methods for the nearest neigh-
bor problem. Extensions to other potential data mining
problems are discussed in section 4. The conclusion and
summary is discussed in section 5.

2. THE CLUSTERING ALGORITHM

The clustering problem is formally defined as follows: Given
a set of points in multidimensional space, find a partition of
the points into clusters so that the points within each clus-
ter are similar to one another. Various distance functions
may be used in order to make a quantitative determina-
tion of similarity. In addition, an objective function may
be defined with respect to this distance function in order to
measure the overall quality of a partition. The clustering
problem is used for similarity search, customer segmenta-
tion, pattern recognition, trend analysis and classification.
Detailed surveys on clustering methods can be found in [20].
Most clustering algorithms do not work efficiently in higher
dimensional spaces because of the inherent sparsity of the
data. This problem has been traditionally referred to as the
dimensionality curse. Recent theoretical results [12] have
shown that in high dimensional space, the distance between
every pair of points is almost the same for a wide variety of
data distributions and distance functions. Under such cir-
cumstances, even the meaningfulness of proximity or cluster-
ing in high dimensional data is questionable. An interesting

Volume 3, Issue 2 - page 11

fact about high dimensional data is that even though the
data is sparse in full dimensionality, certain projections of
the data reveal clearly separated clusters [9]. Most real data
contains different kinds of skews in which some subsets of
dimensions are related to one another. Furthermore, these
subsets of correlated dimensions may vary with data locality
[7; 13]. Correlated sets of dimensions lead to points getting
aligned along arbitrary shapes in lower dimensional space.
Such distributions create clusters in lower dimensional pro-
jections and are referred to as projected clusters. Techniques
for finding projected clusters in lower dimensional spaces
have been discussed in [2; 7; 9]. Such clusters may exist
either in projections of the original set of attributes or in
arbitrary lower dimensional subspaces. In Figures 1(a) and
(b), we have illustrated a data set in which two clusters
P and @ exist in projections of the data which are par-
allel to the original set of attributes. In Figures 1(c) and
(d), we have illustrated a different case in which the clus-
ters R and S exist in completely arbitrary projections of the
data. We note that the formalization for finding clusters in
projections of the original set of attributes provides greater
interpretability [9], whereas that of picking arbitrary pro-
jections is more flexible in discovering clusters created by
inter-attribute correlations [7].

It may often be the case that the density, distribution, and
shapes of the clusters may be quite different in different
data localities and subspaces. We have illustrated examples
of such cases in Figure 2. In many cases, a region of low
density can be clearly distinguished as a separate cluster in
one subspace, but regions with similar density correspond to
noise in another subspace. Often, even within a subspace,
the clusters can be distinguished from one another only on a
case-by-case basis. Such clusters are difficult to isolate using
fully automated methods in which simple mathematical for-
malizations are used as the only criterion in order to define
all clusters. Since there is so much variation across differ-
ent data localities and projections, it is difficult to recon-
cile these differences without the use of human intervention.
At the same time, since there are a very large’ number of
subspaces in the high dimensional case, human involvement
necessitates the exploration of only a small fraction of the
subspaces. Thus, computational support is required in order
to minimize the effort in finding clusters in optimally chosen
subspaces. Clustering of massive high dimensional data sets
is a problem which requires both computational power and
intuitive understanding; therefore, a natural solution is to
divide the clustering task in such a way that each entity per-
forms the task that it is most well suited to. In the system
thus devised, the computer performs the high dimensional
data analysis which is used in order to provide the user with
summary feedback; this feedback is given in a way so that
the human is facilitated in his intuitive task of character-
izing the clusters. The result of this cooperative technique
is a system which can perform the task of high dimensional
clustering better than either a human or a computer.

We note one interesting technique in [18], which describes
a graphical tool for users to interact with clusters in lower
dimensional views of the data. The job of picking these
views is largely left to the user; a task which becomes more
difficult (and time-constrained) with increasing dimension-

!There are infinitely many if arbitrary subspaces of the data
are picked.

SIGKDD Explorations.

P Xy

Xy XX

X X o X o

X X

X P X
X 5 2 R x

X

x X % X X

X X X

X X X X

X X

X X

Cross Section on X-Z axis

(© (d)

Figure 1: Illustrations of Lower Dimensional Clusters

[
z
z
. z z 2
Attribute 1 o
KR z oz
z
Small High-Density Clustersin
Low to Moderate Density Noise
Attribute 2
Attribute 3 '

Large Clusters of
Low to Moderate Density

Attribute 4

Ilustration of two disjoint subspaces

Figure 2: Variation in cluster shape, size and density across
data localities and subspaces

Volume 3, Issue 2 - page 12

0.9

0.8

1

0.7 -

0.6

05

Polarization Point

0.4 .

03[

0.2

0.1p

0

I I I L. I I I I I)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: Determination of a well polarized projection (one
polarization point)

091

0.8

0.7

0.6

0.5

041

0.2

0.1F

S

Density Estimate
@w A
S S

* Pofarizatian Péint "+

0.3} o o * Polarization Point

. "Po_larizaliorquint' :

L L L. L L L L L L)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: Partially Polarized Projection

: l;“‘\\ I
MM\\

15

Figure 7: A plot of the density profile (Well Polarized Pro-
jection)

SIGKDD Explorations.

0.8

0.6

0.4

0.2

-0.2

-0.2

+ *+'Pofarization Point

. *-Pola\.r_lzanl)n point

I I I I I)
0 0.2 0.4 0.6 0.8 1

Figure 4: Determination of a well Polarized Projection (two
polarization points)

1

09"

0.8

07f .

06 -

05

0.4r-

0.2

0.1r-

0

* Polarization Point
* Polarization Point .
03F " *
I I I I I I I I I ,
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Figure 6: Poorly Polarized Projection

20—

15+

Density Estimate
.
o
!

. ,"mlll” "‘

\
\\\‘
'n "III \ \\

Figure 8: Density Profile (Poorly Polarized Projection)

Volume 3, Issue 2 - page 13

Density Estimate

MY
ST

Figure 9: Density Based Cluster Separation (Two Clusters
with n = 20)

Algorithm IPCLUS(Data Set: D,
Minimum Support: s, Number of Polarization Points: k);
begin

{ The 1d Vector Z = {I,...Inx} has one entry string

for each record in the database and is initialized to null }

while not(termination_criterion) do
begin
Randomly sample k points y1 ... yr from the database;
& =ComputePolarizedProjection(D, y1 ... Yk, S);
K = InteractiveClusterSeparation(D, £, y1 ... Yk);
T =UpdateldStrings(Z, K);
end;
(Cf...CE,Q1...Qxk) =FinalClusterCreation(Z, s);

(IR1,...IRk) =EvalMeaningfulness(Z,Ci ...CE, Q:1...Qxk);

return(IR; ... IRk,Cf ...CE. Q:1...QK);
end;

Figure 11: The IPCLUS Algorithm

ality. An interesting system developed recently is the IP-
CLUS system [3] which is able to leverage the computational
power more effectively. The difficult process of determining
the subspaces in which the clusters are best revealed is per-
formed by the computer, and presented visually to the user.
The user then applies his intuitive judgement in separating
out the clusters in this subspace. This process is repeated
iteratively until it is determined that most points have been
covered in one or more clusters. The reactions of the user are
utilized in order to determine and quantify the meaningful-
ness of the final set of clusters which are highly interpretable
in terms of the user-reactions.

We assume that as input to the system we provide a user-
defined support, which is the minimum fraction of database
points in a cluster for it to be considered statistically signif-
icant.

The interactive clustering algorithms works in a series of it-
erations in each of which a projection is determined in which
there are distinct sets of points which can be clearly distin-
guished from one another. We refer to such projections as
well polarized. In a well polarized projection, it is easier for
the user to clearly distinguish a set of clusters from the rest
of the data. In order to create the polarizations, we pick a set

SIGKDD Explorations.

Density Estimate

Il

Il

|
\ /’"0' “\\\W,‘%‘ \

Ay l“\\\
A REANRY

s

Figure 10: Density Based Cluster Separation (Three Clusters
with n = 40)

of k records from the database which are referred to as the
polarization anchors. A subspace of the data is determined
such the data is clustered around each of these polarization
anchors. The data is repeatedly sampled for polarization
anchors in an iterative process, so that the most dominant
subspace clusters containing these anchors are discovered.
It is an interesting problem to find the projection subspace
£ in which the data shows this polarized behavior. In Fig-
ures 3, 4, 5 and 6, we have illustrated a number of different
possibilities for the relationship between the data and cho-
sen polarization points in different projections. In Figures 3
and 4 the data is nicely separated out into different clusters
using one and two polarization points respectively. On the
other hand, in Figure 6, the projection is poorly chosen; so
the data does not show clustered behavior around any po-
larization point. We note that it is often possible that no
projection may contain well defined clusters around the data
points which have been picked for the purpose of polariza-
tion. The larger the number of polarization points, the more
likely that such a situation may occur. We have illustrated
an example in Figure 5 in which there are three polarization
points, but there are well defined clusters in the vicinity of
only two points. In general, if high dimensional data shows
projected clusters of the kind illustrated in Figure 1, then
it is expected that most views will reveal only one or two
of the clusters effectively as illustrated in Figure 3. This
tends to suggest that it may be valuable to use only a small
number of polarization points.

We emphasize that the main purpose of randomly sampling
the data for polarization points is to discover projected clus-
ters (if any) which contain these points. If enough number of
points are sampled, it is expected that the user would have
the opportunity to visualize the most prominent projected
clusters in the data. Furthermore, even if some clearly sep-
arated clusters have low density in all possible projections,
the corresponding subspaces would still be discovered when
a polarization point from the cluster is sampled. In each iter-
ation, when the projection subspace has been found, kernel
density estimation techniques [30] can be used in order to
determine the data density at each point in this projection.
A visual profile of the data density is provided to the user,
who uses this aid in order to find the most intuitive sepa-

Volume 3, Issue 2 - page 14

ration of the data into clusters. The cluster separation by
the user is then recorded in the form of a set of N Identity
Strings (IdStrings), where N is the total number of records
in the database. These set of identity strings are denoted
by Z = (I1...In). We assume that the rth string I, cor-
responds to the rth data record. In the nth iteration, the
value of the nth position in the identity string is recorded.
If the rth data point does not belong to any of the clusters
corresponding to the polarization points, then this position
value is set at * (don’t care), otherwise, we set the value
to the index of the corresponding cluster in that particular
projection. We will provide a more detailed discussion on
this slightly later. As the termination criterion, we ensure
that most points in the data are included in a cluster in
some view. Specifically, we define the coverage of the data
set as the average number of views in which a data point oc-
curs in some cluster. The algorithm is terminated when the
average coverage of each data point is above a user-defined
threshold.

At this stage all the user responses have been encoded in the
identity strings which are postprocessed in order to create
the final set of clusters. The final quality of the clustering
is quantified in terms of the consistency of the user behav-
ior across different projections. The overall framework of
the algorithm is discussed in Figure 11. We note that the
algorithm can be divided into two parts; the first part is iter-
ative which involves the repeated user-interaction; the later
step involves the determination of the final clusters and the
quantification of the meaningfulness of these clusters. Thus,
the basic algorithm includes the following iterative steps:
(1) Determination of subspaces in which the data is well
polarized.

(2) User Interaction in order to visually separate the clus-
ters in different views.

(3) Storing the user interactions in the form of IdStrings;
The procedure for determination of the polarization step
is denoted by the ComputePolarizedProjection procedure of
Figure 11. Details of the method may be found in [3]. The
motivation of the procedure is to find sets of projections in
which the data is well clustered and can be perceived in a
clear visual way by the user. To this effect, in each iteration
we sample a small number k of points from the database.
The points are denoted by 1 ... yx, and are the polarization
points around which we would like to find clusters. Since
y1 ...y, are sampled randomly, many of them may lie in a
well defined cluster in a carefully chosen projection of the
data. If a small number of polarization points are chosen,
then it is reasonable that a projection can be found in which
the data shows distinct clusters containing a majority of the
polarization points. Of course, clusters may also exist in
that projection which do not contain any of the polarization
points. However, once a good projection is determined, all
relevant clusters are used by the algorithm.

In order to facilitate user-interaction, effective ways must
be provided to understand and visualize the clusters in each
projection. A convenient way of doing so is to provide the
user with an idea of which regions of the data are dense or
sparsely populated in a given projection. To this effect, we
use the method of kernel density estimation [30]. In this
technique, in order to calculate the density estimate at x,
we sum up the kernel function values for each data point xz;:

DEFINITION 2.1. Given the data points x1...x N, the ker-

SIGKDD Explorations.

nel density estimate at x s given by:

f@)=1/N-3" Kn(z — i) (1)

i=1

Here Kj is a smooth, unimodal density function which is
dependent on the smoothing parameter h.

A widely used value of the kernel is the gaussian function:
Kz —) = (1/V2r - h) - e~ @202/ @5 (9

For N data points with variance o2, the smoothing param-
eter h is chosen to be 1.06 - - N™1/% in accordance with the
Silverman approximation rule [30].

Since the density at every point in the continuous space
cannot be calculated, we pick a set of p % p grid-points at
which the density of the data is estimated. The density
values at these grid points are used in order to create surface
plot of the data density. An example of such a surface plot
is illustrated in Figure 7. Since clusters correspond to dense
regions in the data, they are represented by peaks in the
density profile. Similarly, the regions which separate out the
different clusters have low density values and are represented
by valleys in the density profile.

In order to actually separate out the clusters, the user can
visually specify density value thresholds which correspond
to noise level at which clusters can be separated from one
another. Specifically, a cluster may be defined to be a con-
nected region in the space with density above a certain noise
threshold 7, which is specified by the user. In order to pro-
vide the visual perspective of this separation, a hyperplane
at a density value of 1 can be superposed on the density
profile. We shall refer to this as the density separator plane.
The intersection between the separator plane and the den-
sity profile creates a number of connected regions at which
the density is above the specified noise threshold. The con-
tours of the intersections between the separator planes and
the density profiles are also the contours of the clusters in
the data. All the data points which lie within a contour
correspond to the same cluster in a given projection. For
example, in Figure 9, we have illustrated a case in which by
specifying the noise threshold n = 20, we find two clusters
above the noise threshold. Note that the resulting clusters
may be of arbitrary shape. Furthermore, by specifying dif-
ferent values of the noise threshold 7 one may have different
number, sizes and shapes of clusters. For example, in Figure
9, there are two clusters at the specified noise threshold of
20, whereas in Figure 10, at the higher noise threshold of 40,
there are three clusters. If we increased the noise threshold
further, then one or more of the clusters may not be revealed
at all. We note that both Figures 9 and 10 are reasonable
separations of the data into clusters of different levels of
granularity. This is another interesting aspect of the cluster
creation process in which it is often difficult to settle on the
use of single density, since clusters in different localities will
have different densities. In order to handle this, we allow the
user the flexibility to specify multiple values of 7 in a sin-
gle projection. The smaller values of the density will reveal
even the low density clusters in the data but will not reveal
the finer separations among different clusters. The larger
values of the density will reveal the fine grained separations
into different clusters, but will not reveal the low density
clusters. We assume that the final set of densities picked by

Volume 3, Issue 2 - page 15

the user is denoted by K = k1 ...K,. In some projections,
the data may not be amenable to clustering. An example of
such a projection is illustrated in Figure 8. In such cases, the
user may choose not to specify any value of the noise thresh-
old 7, and the set K containing the noise threshold is null.
This will not happen too often if the subspace determination
procedure of the previous section is effective in finding well
polarized projections. We note that the number of different
separations r may depend upon the nature of a given projec-
tion and a user’s understanding of the data behavior. Such
intuition cannot be matched by any fully automated system
effectively; this is an example of the criticality of the user in
the cooperative process of high dimensional clustering. We
note that in the Figures 9 and 10, the polarization points
occur at the peaks of local optima in the density profiles. It
is typical that polarization points occur at high elevations
in the density profile, because the subspace determination
algorithm actively tries to finds a view in which the sampled
polarization points occur in the interior of some cluster. We
note that the specification of the noise threshold 7 need not
be done directly by value; rather the density separator hy-
perplane can be visually superposed on the density profile
with the help of a mouse.

The behavior of the user in a given projection is used in
order to update the set of IdStrings Z. After all the clusters
have been found, we assign each of them an Id number.
(The Ids of the clusters are numbered from 1 through the
total number of clusters which have been determined in that
particular projection.) If a data point lies inside a cluster,
then its identity is equal to that of the corresponding cluster,
otherwise it is “*”. We concatenate the identity of each
data point to the corresponding IdString. We note that
for each different noise threshold specified by the user in
any projection, we concatenate exactly one element to the
end of each IdString. Therefore, at the end of the process,
the length of each string is equal to the total number of
acceptable cluster separations specified by the user.

Once the interactive phase has been terminated by multiple
iterations of subspace determination and user interaction,
these IdStrings are used to create the final set of clusters.
We note that even though a set of points may be perceived
as a cluster by the user in a given projection, they may be
separated out into different clusters in a different projection.
Therefore, in order to find the final set of clusters we would
like to isolate sets of points which have been classified by the
user into the same projection in as many views as possible.
At the same time, we would like to guarantee that a cluster
contains at least the minimum fractional support s. Since
the user characterization of clusters is captured with the set
of identity strings in Z, we need to find subpatterns in these
strings which occur throughout the data.

Consider an IdString I, and pattern S of the same length
l. A pattern S is a subpattern of I, if and only if for each
position ¢ € {1,...1} in S which is not *, the ith position
in I, also has the same value. Thus, the string *2*5*** is a
subpattern of the string *2*5*4* but it is not a subpattern
of the string *2*3*4*. The support of the pattern S is equal
to the percentage of the IdStrings in Z, for which the string
S is a subpattern. The larger the number of fixed positions
in S, the smaller the support of the string. We note that the
minimum support s provided by the user is a measure of the
minimum number of data points which a cluster must con-
tain for it to be considered useful. Therefore we find all the

SIGKDD Explorations.

mazimal subpatterns which have support greater than the
user defined threshold s. We also refer to such subpatterns
as itemsets. Methods for finding such itemsets have been
proposed? in [31]. Let us denote the final patterns found
by Qi1...Q9k. Note that each of these patterns Q; can be
mapped onto all the data points CF whose IdStrings are
supersets of these subpatterns. We shall refer to the sub-
pattern Q; for cluster CF as the cluster template. A position
value m’ on this template @; which is not * (a fixed position)
corresponds to a projection in which the points of C;” belong
to cluster id m’ separated out by the user in that view. We
note that when the projections are chosen from the original
set of dimensions, it is possible to interpret the clusters using
the cluster template. This is because the cluster template
Qi of the cluster CJ provides the different combinations of
dimensions in which the user always classified all of these
points to belong to the same cluster. This provides an intu-
itive interpretation of how the final clusters relate both to
the attributes in the data and the history of user interaction.
The subspace in which the set of points C/ is a cluster cor-
responds to the union of the all the 2-dimensional subspaces
for fixed positions in ;. It now remains to discuss how the
meaningfulness of each of these clusters is quantified.

Since the final clusters are created by determination of the
sets of points which occur together as clusters in multiple
projections, it is useful to evaluate the consistency of the
user behavior across these different views in order to eval-
uate meaningfulness. In order to do so, we calculate the
interest ratios of the patterns which define the clusters. The
interest ratio of a pattern is the ratio of its actual support
to the expected support based on the assumption of statis-
tical independence. Let S = m;...m; be a given cluster
template, created by the [iterations. Let 6 be the frac-
tion of database points supported by S. Let 8; be the frac-
tional support of the number of points corresponding to m;.
(Specifically, 8; is the fraction of points that belong to clus-
ter Id m; for the visual projection i. When m; is “*”, then
the value of f3; is 1.) Then the interest ratio IR(S) of the
cluster template S is the ratio of the support of template S
to its support assuming statistical independence.

IR(S)=0/(61-B2-B3-..B1) (3)

When the user behavior does not show any meaningful cor-
relation across the different projections, the interest ratio
for the clusters discovered will be close to one. An interest
ratio larger than 1 is indicative of a cluster which reveals
significantly greater affinity among the different data points
based on the user behavior. This effectively means that
the set of points occur together in one cluster based on the
user observations in a larger number of projections than can
be justified by random or statistically independent behav-
ior across the different views. Thus, the IPCLUS algorithm
finally returns all the clusters, their templates (which pro-
vide interpretability) and the interest ratios (which quantify
meaningfulness).

3. VISUAL METHODS FOR HIGH DIMEN-
SIONAL NEAREST NEIGHBOR SEARCH

*Note that the method in [31] is for binary market basket
data. The above string problem can be transformed to the
binary market basket problem by defining an item for each
position-value pair.

Volume 3, Issue 2 - page 16

The nearest neighbor search problem is defined as follows:
For a given query point @, find the data points which are
closest to it based on a pre-defined distance function. Ex-
amples of application domains in which this problem arises
are similarity search in geometric databases, multimedia
databases, and data mining applications such as fraud detec-
tion and information retrieval. Typical domains such as data
mining contain applications in which the dimensionality of
the representation is very high. For example, a typical su-
permarket application will contain hundreds of dimensions.
Consequently a wide variety of access methods and data
structures have been proposed for high dimensional nearest
neighbor search [11; 13; 21; 25; 33].

It has been questioned in recent theoretical work [12] as
to whether the nearest neighbor problem is meaningful for
the high dimensional case. These results have characterized
the data distributions and distance functions for which all
pairs of points are almost equidistant from one another in
high dimensional space and have illustrated the validity of
the results on a number of real work loads. We note that
these results do not necessarily claim that nearest neighbor
is not meaningful in every high dimensional case, but that
one must be careful in interpreting the significance of the
results. For example, a lack of contrast in the distribution
of distances implies that a slight relative perturbation of the
query point away from the nearest neighbor could change
it into farthest neighbor and vice versa. In such cases, a
nearest neighbor query is said to be unstable. Furthermore,
the use of different distance metrics can result in widely
varying ordering of distances of points from the target for
a given query. This leads to questions on whether a user
should consider such results meaningful.

Recent work [17] has shown that by finding discriminatory
projections in the neighborhood of a query point, it is pos-
sible to improve the quality of the nearest neighbors. This
approach uses the fact that even though high dimensional
data is sparse in full dimensionality, certain projections of
the space may contain meaningful patterns. These mean-
ingful patterns are more closely related to the query point
than the ones determined by using the full dimensionality.
Related techniques [6; 8] design distance functions in a data
driven manner in order to find the most meaningful nearest
neighbors. In these techniques, the statistical properties of
high dimensional feature vectors are used in order to obtain
meaningful measures of the distances between the points.
This is often a difficult task, since the most effective method
of measuring distances may vary considerably with the data
set and application domain.

Since the issue of meaningfulness is connected to the insta-
bility in measurement of distances, a natural guiding princi-
ple in these methods is to find data projections and distance
functions in which the distances of the nearest neighbors
from the query point have high contrast from the rest of
the data. It has been shown in [17] that such a strategy
leads to improvement in search quality. It has also been
independently confirmed for the multimedia domain that
distinctiveness sensitive nearest neighbor search [22] leads
to higher quality of retrieval. At the same time, it is quite
difficult for a fully automated system to always find nearest
neighbors which would be considered valuable and meaning-
ful by the user. Furthermore, even if the neighbors found
are valuable, a user would have little idea about the quality
of the neighbors found without being actively involved in

SIGKDD Explorations.

the process. The fully automated systems discussed in [8;
17] are incomplete in their characterization of the data in
terms of a single best projection or distance function. Dif-
ferent projections can provide different views of the data, all
of which may be informative to a human in understanding
the relationship between the query point and the rest of the
data.

In light of these issues, it is especially advantageous to de-

velop a human-computer interactive system for high-dimensional

nearest neighbor search. In this method, the distribution of
the data in carefully chosen projections are presented visu-
ally to the user in order to repeatedly elicit his preferences
about the relationships between the data patterns and the
query point. Specifically, these projections are chosen in
such a way that the natural data patterns containing the
query point can be visually distinguished easily. It is evident
from our earlier discussion about Figure 1 that even though
it is difficult to define clusters for sparse high dimensional
data, it is often possible to find clusters in certain lower
dimensional projections. Many of these clusters may con-
tain the query point. We refer to such projections as query
centered projections and the corresponding clusters as query
clusters. These projections may exist either in the original
sets of dimensions or in an arbitrarily oriented subspace of
the data. For each such projection determined, the user is
provided with the ability to visually separate out the data
patterns which are most closely related to the query point.
In a given view, a user may choose to pick some or no points
depending upon the nature and distribution of the data. At
the end of the process, these reactions are utilized in order
to determine and quantify the meaningfulness of the nearest
neighbors found from the user perspective.

In addition, the sparsity of the data creates interpretabil-
ity problems for the meaningfulness of the nearest neighbor
problem. However, it has also been shown in recent work
[17] that even though meaningful contrasts cannot be deter-
mined in the full dimensional space, it is often possible to
find lower dimensional projections of the data in which tight
clusters of points exist. In this spirit, the projected nearest
neighbor technique [17] finds a single optimal projection of
the data in which the closest neighbors are determined in
an automated way using the euclidean metric. In reality, no
single projection provides a complete idea of the distribu-
tion of the data in the locality of the query point. The full
picture may be obtained by using multiple projections, each
of which provides the user with different insights about the
distribution of the points. For example, Figure 12(a) illus-
trates a projection in which there is a cluster near the query
point which is well separated from the other data points.
Such a projection is very useful, since it provides a distinct
set of points which can be properly distinguished from the
rest of the data. Figures 12(b) and 12(c) are examples of
projections in which the closest records to the query point
are not well distinguished from the rest of the data. For ex-
ample, in the case of Figure 12(b), the query point is located
in a region which is sparsely populated; this is not a good
query centered projection, since one cannot identify a dis-
tinct subset of points in proximity to the query. In the case
of Figure 12(c), the projection is a poor one irrespective of
the nature of the query point, since the points are uniformly
distributed and do not separate out well into clusters. It is
often a subjective issue to determine whether or not a given
projection distinguishes the query cluster well. There may

Volume 3, Issue 2 - page 17

Figure 12: (a) Good Query Centered Projection (b) Poor Query Centered Projection (Query Point in Sparse Region) (c)

Noisy projection

also be many cases in which query points may be located at
the fringes of a cluster, and it may be difficult to determine
the query cluster in an automated way. In all such cases, it
becomes important to use the visual insight and feedback of
a user in diagnosing the query clusters.

We note that it is possible that a good query-centered pro-
jection may be difficult to find in a combination of the orig-
inal set of attributes. In such cases, it may be necessary
to determine arbitrary projections created by vectors which
are not parallel to the original axis directions. On the other
hand, the use of axis-parallel projections has the advantage
of greater interpretability to the user. In this paper, we pro-
pose methods for determining projections of both kinds i.e.
axis-parallel and arbitrary projections.

Since the system works by determining the distribution of
the nearest records to the query points in a given projec-
tion, we introduce a parameter called the support. This is
the number of database points that are candidates for the
nearest neighbor in a given projection, and whose distribu-
tion relative to the rest of the data set is analyzed. The
value of this support parameter can either be chosen by the
user or the system. In most real applications, users are not
looking for a single nearest neighbors, but a group of nearest
neighbors all of which can be considered to be close matches
for a target query. Therefore, the number of database points
to be retrieved by the user is the support s used for the anal-
ysis. We note that in order to perform a proper analysis of
the directions in the data of greatest discrimination, this
support should at least be equal to the dimensionality d.
Therefore, in cases when the user-specified support is less
than d, we set it equal to d. We also note that in many
cases, there may be a certain number of points which are
inherently more closely related to the query as compared
to the rest of the database. This number may be different
from s, and cannot be known a-priori. In such cases, we will
see that our approach is able to provide some guidance in
returning the natural sets of points related to the query.
The system works in an iterative loop in which a set of
d/2 mutually orthogonal projections are presented to the
user in a given iteration. Each of these projections is care-
fully chosen such that it brings out the contrast between
the points closest to the query and the remaining points.
Once such a projection has been found, the user separates
out the points which belong to the query cluster. The se-
lection statistics of each data point are maintained in the
set of counts v(1)...v(IN) which are initialized to zero, and

SIGKDD Explorations.

incremented whenever a set of points is picked. After each
iteration of d/2 projections, the set of choices made by the
user v(-) are utilized determine his level of perception as to
the level of closeness of each data point to the query point
Q. This number lies in the range (0, 1), and is referred to
as the meaningfulness probability. This number defines the
user-reaction probability that the data point can be distin-
guished as significantly more closely related to the query
point as compared to the average record in the data. The
meaningfulness probability is calculated independently for
each iteration of d/2 projections, and the values over mul-
tiple iterations are aggregated in order to determine a final
value. At the end of each iteration, those points are removed
from the data set which were not picked even once in any
projection. Thus, the user behavior in an iteration influences
the later profiles which are presented to him. The process
continues until it is determined that the current ordering of
meaningfulness probabilities reliably matches user’s intent
based on his reaction to all views which have been presented
to him so far. The details of the meaningfulness quantifica-
tion and termination criterion are described a later section.
Each iteration (henceforth referred to as a major iteration)
is divided into a set of d/2 minor iterations, in each of which
a projection is determined and presented visually to the user
for his feedback. The set of d/2 projections which are de-
termined in each major iteration are mutually orthogonal.
This is because we would like to present the user with sev-
eral independent perspectives of the data, which together
span the full dimensional space. In order to achieve this, we
maintain a current data set D., and a current subspace &..
Let us say that a total of r < d/2 projections have already
been presented to the user in the current major iteration.
Let the subspaces corresponding to these projections be de-
noted by &,r05(1) - - - Eproj(r)- Then, the current subspace &
is the d—2-r dimensional subspace which is orthogonal to all
of these projections, and is given by U —Ui—1Epy0;(s)- Here U
is the full dimensional space. The data set D, is the projec-
tion of the data set D onto the subspace .. Thus, each data
point z; € D is represented by the data point Proj(z;,&:)
in D.. The next projection &,,,;(»+1) is determined by using
the data set D..

In each minor iteration, we perform the following steps:

(1) Finding the most discriminatory projection which is cen-
tered around the query point. This discriminatory projec-
tion is picked out of &..

(2) Interactive determination of the query cluster by the

Volume 3, Issue 2 - page 18

f

i

— M tl'l’

L

I

Figure 13: Query Cluster Separation with Noise Threshold

¢ =20

| l /] / / | / /] /

Figure 15: Query Cluster Separation (Second Case ¢ = 17.4)

SIGKDD Explorations.

10—
i

- I ”ll"'ll"“ ',
I" ““%M Al

il

@
———

Figure 14: Query Cluster Separation with Noise Threshold
¢ = 34 (Null Query Cluster)

—

o ———————\—
—_———

o

L

=l ""“‘

Figure 16: Density Profile for poor projection

Volume 3, Issue 2 - page 19

user based on the visual separation of the query point from
the remaining data.

(3) Updating the counts for the points in the query cluster.
In the remaining part of this section, we will discuss each of
these steps in detail.

Once a discriminatory projection has been determined, then
it is valuable to rely on user-interaction in order to separate
the query cluster from the remaining data points. In or-
der to achieve this objective, it is desirable to find ways
of providing the user with a visual idea of the nature of
the probabilistic distribution of the data. To this effect, we
again use the kernel density estimation technique [30] as for
the clustering problem. In order to actually construct the
density profiles, we estimate the probability density of the
data at a set of p * p grid-points, which are used to create
surface plots. Examples of such density profiles are illus-
trated in Figures 13, 14, 15 and 16. Note that there is a
sharp and well separated peak containing the query point.
This corresponds to the highly dense cluster near the query
point. This behavior is typical of a well chosen projection
which discriminates the data patterns near the query point
well. A second way of providing the user with a visual un-
derstanding of the data® is to provide a lateral density plot,
in which we have a scatter plot of fictitious points which are
generated in proportion to their density. We note that all
of Figures 12(a), 12(b), and 12(c) are lateral scatter plots of
500 points generated from synthetic data sets.

Once the user is provides with this visual profile then it
is possible for him to separate the query cluster from the
remaining points by using either of the two visual profiles.
A convenient way of separating the query cluster visually
is by using density separators of a certain height. In this
technique the user specifies the density ¢ which is the noise
threshold. This threshold is used in order to determine the
set of points which are the user-defined nearest neighbors in
that projection by using the concept of density connectivity.
The concept of density connectivity [14; 18] is defined as
follows:

DEeFINITION 3.1. A data point x is density connected to
the query point Q) at noise threshold ¢, if there exists as path
P from z to Q such that each point on P has density larger
than the noise threshold ¢.

Thus, for a given noise threshold ¢ and query point @Q, it
is possible to uniquely determine the set of points in the
database which are density connected to the query point.
For example, in Figures 13 and 14, we have shown the
density profile of a data set along with density separator
planes for two different values of the noise threshold ¢. We
note that the contour of intersection of the density separator
plane with the density profile of the data is a set of closed
regions. Each such closed region corresponds to the con-
tour of the cluster in the projection. However, only one of
these contours is relevant; the one that contains the query
point Q. All data points contained within this contour are
relevant answers to the query point for this particular pro-
jection. We shall henceforth refer to the contour containing
the query point @ at noise threshold ¢ as the (¢, Q)-contour.

3Note that a density scatter plot is significantly easier
to comprehend than the scatter plot of the original data
points which shows considerable overlap among the individ-
ual points. Also, the number of points in a lateral scatter
plot can be chosen in order to provide the best visual profile.

SIGKDD Explorations.

Such a contour is not restricted to be of any particular shape,
and is dependent only upon the distribution of the points in
the data. For example, in Figure 13 there are two density
connected regions above the noise threshold ¢, whereas in
the second case, there are three such regions, when a higher
noise threshold is used. All the data points which lie in the
same region as the query cluster are the set of preferences
for that particular projection. In this particular case, the
difference between two views at noise threshold ¢ = 34 and
¢ = 20 is that in the former case, the query point is not
included in the contour of intersection of the peak contain-
ing the query point and the density separator hyperplane.
Therefore, at that value of the noise threshold ¢ = 34, there
are no points in the query cluster. At a noise threshold of
¢ = 20, a distinct cluster of points containing the query
point are created; by reducing ¢ further, more and more
points from the fringes of the cluster are included. Here,
the intuition of a user is very useful, since an accurate de-
lineation of the related data pattern is often not possible by
fully automated methods. We also note that if the query
point had belonged to one of the other two peaks, then for
different values of the noise threshold, different number of
peaks would have been included in the query cluster. By
using ¢ = 0, all points are included in the query cluster. We
refer to such views created by this process as density sepa-
rated views, since they clearly show the various clusters in
the data based on the density profile and the noise threshold
supplied by the user. We note that it is not necessary for the
user to supply the noise threshold after just one view of the
data. Rather, the user can look at density separated views
for many different values of the noise threshold ¢ in order
to interactively converge at the most intuitively appropriate
value.

The user reactions over multiple iterations can then be ag-
gregated into the final preference counts. These preference
counts indicate the value and meaningfulness of the nearest
neighbor from the user perspective.

4. EXTENSIONS TO OTHER DATA MIN-
ING PROBLEMS

The methodologies discussed in this paper can be extended
to a number of data mining problems. Some important prob-
lems in which visual interaction can be leveraged effectively
are as follows:

(1) Classification: High Dimensional Data is a difficult
problem for decision tree construction because of the large
number of combinations of dimensions which have discrimi-
natory power. Therefore, it is difficult to effectively build a
decision tree for high dimensional data without using a large
number of nodes or complex split criteria. In an interactive
application, a user may find it more valuable to develop a
diagnostic decision support method which can reveal signif-
icant classification behavior of exemplar records. Such an
approach has the additional advantage of being able to op-
timize the decision process for the individual record in order
to design more effective classification methods. In the work
discussed in [4], we propose a method which provides the
user with the ability to interactively explore a small num-
ber of nodes of a hierarchical decision process so that the
most significant classification characteristics for a given test
instance are revealed. Therefore, this method combines the
abilities of the human and the computer in creating an effec-

Volume 3, Issue 2 - page 20

tive diagnostic tool for instance-centered high dimensional
classification.

(2) Association Rules: The problem of association rules
is an expecially important one for the case of online and
interactive data mining. This is because in most cases, as-
sociation rules are generated by batch processing algorithms
result in large number of rules which cannot be assimilated
easily for users. There is a greater need for techniques which
provide better assimilation and interactive abilities in dis-
covering rules of various types. One important technique
proposed recently is discussed in [1] in which online capabil-
ities for finding association rules are propsed. The system
also provides the user the ability to determine rules contain-
ing particular items and constraints. To provide even better
understanding visual techniques are needed. To this effect,
the method of [19] proposes moasic plots for interactive vi-
sual association rule mining. We believe that this technique
can be extended to further ease several limits of the data
mining process:

¢ In many applications, it is difficult to provide support and
confidence as hard numbers without having an intuitive idea
of the nature of the underlying rules. On the other hand,
the technique in [19] has the capacity of abstracting out such
parameters from the data mining process.

¢ The technique in [19] can also be used in order to determine
which items are the most valuable for the association rule
discovery process. This lays the groundwork for effective
exploratory mining of association rules.

5. CONCLUSIONS AND SUMMARY

In this paper, we discussed the merits of interactive visual
approaches to a number of data mining problems. The pri-
mary aim of the paper is to show that interactive visual
data mining is a technique which has powerful implications
in leveraging the intuitive abilities of the human for data
mining problems. This leads to solutions which can model
data mining problems in a more intuitive and unrestricted
way that methods which make use excessive use of messy
formalizations and parameters. The additional advantage
of such techniques is that the user also has much better un-
derstanding of the final quality of the solution.

6. REFERENCES

[1] C. C. Aggarwal, P. S. Yu. Online Generation of Associ-
ation Rules. ICDE Conference, 1998.

[2] C. C. Aggarwal et al. Fast algorithms for projected clus-
tering. ACM SIGMOD Conference Proceedings, 1999.

[3] C. C. Aggarwal. A Human-Computer Cooperative Sys-
tem for Effective High Dimensional Clustering. ACM
KDD Conference, 2001.

[4] C. C. Aggarwal. Towards Exploratory Instance Centered
Classification of High Dimensional Data. IBM Research
Report, 2002.

[5] C. C. Aggarwal. Towards Meaningful High Dimensional
Nearest Neighbor Search by Human-Computer Interac-
tion. ICDE Conference, 2002.

[6] C. C. Aggarwal, A. Hinneburg, D. A. Keim. On the
Surprising Behavior of Distance Metrics in High Dimen-
sional Space. ICDT Conference Proceedings, 2001.

SIGKDD Explorations.

[7] C. C. Aggarwal, P. S. Yu. Finding Generalized Projected
Clusters in High Dimensional Spaces. ACM SIGMOD
Conference Proceedings, 2000.

[8] C. C. Aggarwal, P. S. Yu. The IGrid Index: Reversing
the Dimensionality Curse for Similarity Indexing in High
Dimensional Space. ACM SIGKDD Conference Proceed-
ings, 2000.

[9] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan. Au-
tomatic Subspace Clustering of High Dimensional Data
for Data Mining Applications. ACM SIGMOD Confer-
ence Proceedings, 1998.

[10] M. Ankerst, M. Ester, H.-P. Kriegel. Towards an Ef-
fective Cooperation of the User and the Computer for
Classification. KDD Conference Proceedings, 2000.

[11] S. Berchtold, D. A. Keim, H.-P. Kriegel: The X-Tree:
An Index Structure for High-Dimensional Data, VLDB
Conference Proceedings, 1996.

[12] K. Beyer, R. Ramakrishnan, U. Shaft, J. Goldstein.
When is nearest neighbor meaningful? Proceedings of
the ICDT Conference, 1999.

[13] K. Chakrabarti, S. Mehrotra. Local Dimensionality Re-
duction: A New Approach to Indexing High Dimensional
Spaces. VLDB Conference Proceedings, 2000.

[14] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, X. Xu.
Density-Connected Sets and their Application for Trend
Detection in Spatial databases. Proceedings of the KDD
Conference, 1997.

[15] C. Faloutsos et al. Efficient and Effective Querying by
Image Content. Journal of Intelligent Information Sys-
tems, Vol 3, pp. 231-262, 1994.

[16] J. Han, L. Lakshmanan, R. Ng. Constraint Based Mul-
tidimensional Data Mining. IEEE Computer, Vol. 32,
no. 8, 1999, pp. 46-50.

[17] A. Hinneburg, C. C. Aggarwal, D. A. Keim. What is
the nearest neighbor in high dimensional spaces? Pro-
ceedings of the VLDB Conference, 2000.

[18] A. Hinneburg. D. A. Keim, M. Wawryniuk. HD-Eye:
Visual Mining of High Dimensional Data. IEEE Com-
puter Graphics and Applications, 19(5), pp. 22-31, 1999.

[19] H. Hofman, A. Siebes, A. Wilhelm. Visualizing Asso-
ciation Rules with Interactive Mosaic Plots. ACM KDD
Conference, 2000.

[20] A. Jain, R. Dubes. Algorithms for Clustering Data,
Prentice Hall, New Jersey, 1998.

[21] N. Katayama, S. Satoh: The SR-Tree: An Index Struc-
ture for High Dimensional Nearest Neighbor Queries.
ACM SIGMOD Conference, pages 369-380, 1997.

[22] N. Katayama, S. Satoh. Distinctiveness Sensitive Near-
est Neighbor Search for Efficient Similarity Retrieval of
Multimedia Information. Proceedings of the ICDE Con-
ference, 2001.

Volume 3, Issue 2 - page 21

[23] D. A. Keim. Visual Support for Query Specification and
Data Mining. Shaker Publishing Company, Aachen, Ger-
many 1995.

[24] D. A. Keim, H.-P. Kriegel, T. Seidl. Supporting Data
Mining of Large Databases by Visual Feedback Queries.
ICDE Conference, 1994.

[25] K.-I. Lin, H. V. Jagadish, C. Faloutsos The TV-tree:
An Index Structure for High Dimensional Data. VLDB
Journal, Volume 3, Number 4, pages 517-542, 1992.

[26] Y. Rui, T. S. Huang, S. Mehrotra, Content-based image
retrieval with relevance feedback in MARS. Proceedings
of the IEEE Conference on Image Processing, 1997.

[27] G. Salton. THE SMART Retrieval System - Experi-
ments in Automatic Document Processing, Prentice Hall,
Englewood Cliffs, NJ, 1971.

[28] S. Sarawagi. User-adaptive Exploration of Multidimen-
sional Data. VLDB Conference Proceedings, pp. 307-316,
2000.

[29] T. Seidl, H.-P. Kriegel: Efficient User-Adaptable Sim-
ilarity Search in Large Multimedia Databases. VLDB
Conference Proceedings, 1997.

[30] B. W. Silverman. Density Estimation for Statistics and
Data Analysis, Chapman and Hall, 1986.

[31] R. Srikant, R. Agrawal. Mining Quantitative Associa-
tion Rules in Large Relational Tables. ACM SIGMOD
Conference, 1996.

[32] A. K. H. Tung, R. Ng, L. V. S. Lakshmanan, J. Han.
Constraint-based clustering in large databases. ICDT
Conference, 2001.

[33] R. Weber, H.-J. Schek, S. Blott: A Quantitative Anal-
ysis and Performance Study for Similarity-Search Meth-
ods in High-Dimensional Spaces, VLDB Conference Pro-
ceedings, 1998.

[34] L. Wu, C. Faloutsos, K. Sycara, T. Payne. FALCON:
Feedback Adaptive Loop for Content-Based Retrieval.
VLDB Conference Proceedings, 2000.

SIGKDD Explorations.

Volume 3, Issue 2 - page 22

