Requirements for Clustering Data Streams

Daniel Barbara

George Mason University,
ISE Dept MSN 4A4,
Fairfax, VA 22030.

dbarbara@gmu.edu

ABSTRACT

Scientific and industrial examples of data streams abound in
astronomy, telecommunication operations, banking and stock-
market applications, e-commerce and other fields. A challenge
imposed by continuously arriving data streams is to analyze them
and to modify the models that explain them as new data arrives. In
this paper, we analyze the requirements needed for clustering data
streams. We review some of the latest algorithms in the literature
and assess if they meet these requirements.

Keywords

Data streams, clustering, outliers, tracking changing models.

1. INTRODUCTION

Organizations today accumulate data at an astonishing rate. This
fact brings new challenges for data mining. Finding out when
patterns change in the data opens the possibility of making better
decisions and discovering new interesting facts. The challenge is
to design algorithms that can track changes in an incremental way
without making growing demands on memory and processing
resources.

The kind of data sets that arise in recent applications is
appropriately referred to as data streams, i.e., a continuous stream
of new data points that makes operating on the past portions of the
data repeatedly an impractical proposition.

In this paper we examine the requirements to track changes in
clustering models for a data stream. Clustering is a widely used
technique that helps uncovering structures in data that were
previously not known. Finding changes in clusters as new data is
collected can prove fruitful in scenarios like the following:

e Tracking the evolution of the spread of illnesses. As
new cases are reported, finding out how clusters evolve
can prove crucial in identifying sources responsible for
the spread of the illness.

e Tracking the evolution of workload in an e-commerce
server, which can help in dynamically fine tune the
server to obtain better performance.

e Tracking meteorological data, such as temperatures
registered throughout a region, by observing how
clusters of spatial-meteorological points evolve in time.

e Tracking network data to study changes in the traffic
patterns and possible intrusions.

e Tracking data feeds from sensor applications.

SIGKDD Explorations.

In this paper we explore the requirements that are needed for a
clustering algorithm that can successfully process data streams
tracking changes on the clustering models. The paper is organized
as follows. Section 2 talks about the requirements. Section 3
presents a way of deciding when we are in need for new clusters,
as new data arrives. Section 4 takes a look at published algorithms
that have been designed with incremental processing of points in
mind, and determines if these algorithms meet the requirements
posed here. Section 5 points at a few open directions of research
for data stream clustering. Finally, Section 6 offers conclusions.

2. REQUIREMENTS FOR CLUSTERING
DATA STREAMS

The nature of data streams calls for three basic requirements in
Clustering algorithms:

e Compactness of representation
* Fast, incremental processing of new data points

o Clear and fast identification of ““outliers’’

We shall explain each one of these requirements in turn in the
following sub-sections.

2.1 Compactness of representation

Since data streams are continuously arriving to a site, any
clustering algorithm that aims to process them cannot afford the
luxury of a lengthy description of the clusters found so far. In
particular, basing the decision of where to put the next point on
the list of clusters found so far is not an option. This list grows
unbounded as new points arrive, and therefore would exhaust any
main memory resources that the machine possesses. Since we
insist on the capacity of processing new points on-line, checking
the new point membership against secondary memory
representations of the current clusters is not possible. Therefore, a
data stream clustering algorithm must provide a representation of
the clusters found that is not only compact, but it does not grow
appreciably with the number of points processed. (Notice that
even a linear growth is intolerable.)

Volume 3, Issue 2 — page 23

2.2 Fast, incremental processing of new data
points

The need for speed and incremental processing is obvious once
we consider the on-line nature of the task. However, this is far
from being a trivial requirement. The placement of new points has
to be based on the evaluation of a function. This function has to
meet the following two conditions:

e The placement of new points cannot be decided by a
function that requires comparison with all the points
that have been processed in the past.

e The function that decides the placement of new points
has to exhibit good performance.

The first condition argues again for a compact representation of
the current clusters. But it also argues for a function that can be
evaluated using that representation. The second condition merely
addresses the need for a function with good complexity: e.g., one
that is linear on the size of the representation chosen.

2.3 Clear and fast identification of “~outliers”’

This requirement is probably the least intuitive of the three. We
have placed the word outliers between quotes, since by that term
we mean to imply points that do not fit well in any of the clusters
that the algorithm has found so far.

The reason for including this requirement can be explained by the
dynamic nature of data streams. It is highly likely that the data
stream will exhibit different trends during its lifetime, and
consequently the points received at any given time may not fit
well under the clustering model the algorithm has identified so
far.

Thus, the algorithm employed must be able to detect this in a clear
and speedy manner. In fact, the function that evaluates the point
placement must have within its range a value for ““outlier.”

Associated with this requirement is the need to decide what to do
with these outliers. We view this as an application dependent
decision: in some cases, if sufficient outliers are found we may
want to abandon the old clusters for new ones. An example of this
could be a data stream of weather data points: sufficient outliers
indicate a new trend that needs to be represented by new clusters.
In others, we may have to redefine the boundaries of existing
clusters. An example of this case could be a data stream of spotted
cases of an illness. Outliers may indicate the spread of the
epidemics over larger geographical areas.

3. Tracking clustering models

As new points arrive, we need to determine if a new clustering
model is needed. Assuming we have a clear way of determining
outliers by the algorithm used (as specified in Section 2), we can
keep track of how many outliers we have seen in the recent past.
To determine if too many of them have been observed to make the
current clustering model unfit, we can resort to the use of
Chernoff bounds [3], by defining a random variable Xi (each i
corresponding to a new point) whose value is O if the point is an
outlier and 1 otherwise. (A good analogy is to consider the
clusters as ““bulls eyes’’ and the new point as a dart; if the dart

SIGKDD Explorations.

“hits’” the clusters, then we assign a value of 1 to Xi, otherwise
we assign a 0.)

Since we do not know the value of p, the probability of a *“hit”’ by

a point (i.e., the probability of Xi being 1), we have to estimate it
by dividing sum of the Xi variables, X, by the number of points we
have tried to cluster, n. The estimate will be bound to the real
value by using Equation (1).

Pr[|%— pel>1-9 o

In Equation (1), &€ is the desired deviation of the estimate with

respect to the real value, while O indicates an arbitrarily small
probability. In essence, Equation (1) establishes that the estimate
and the real value can be made to be arbitrarily close by the

choice of O .

Using the Chernoff inequality, we can bound the estimate of the
success probability, by bounding the probability that the estimate

X
— surpasses (1+ £)p, as shown in Equation (2). The
n

variable n indicates the number of points that we have tried
(successfully or unsuccessfully) to cluster.

P2 > (1+&) p] < &P/
n

Pr[% >(1+e)p] <P ()

It can be proven (see [11]) that Equation (1) will hold if the
number of successful attempts to cluster points, s (i.e., number of
times that the random variable is 1) is bounded by Equation (3),
while n is bounded by Equation (4).

>3
3(1+¢) 2
n< m In(g_) 4)

These two bounds are all we need to decide whether the current
clustering model is valid under the new data we are receiving. If
after processing n points (given by Equation (4)), we are able to
successfully cluster at least s of them, the clustering model is still
valid. Otherwise, it is time to produce a new model.

Once that it has been established that a new clustering model is
needed, the decision on how to proceed is application dependent.
More precisely, two actions are possible:

Volume 3, Issue 2 — page 24

* Re-cluster the entire set of points seen so far, including
the last n points that prompted the decision to re-cluster.
Obviously, this is the most expensive course of action.
However, given a good, compact representation of the
clusters obtained before the string of unsuccessful
attempts, it is possible to use that representation, plus
the ““outliers’” to produce new clusters, without having
to look again at all the previous points.

. Discard the old clusters, and produce a new set of
clusters, by considering only the last n processed points.

Following the latter course of action, we have been able to use
these bounds to effectively track clusters in data streams (see [2]).
Notice that after any of the two paths of action is taken, the need
to re-evaluate the number of clusters that the algorithm aims to
find (a common input value for most of the algorithms in the
literature) exists.

4. Comparison of Existing Algorithms

This section presents a summary of a series of published
algorithms whose aim has been to incrementally cluster points in a
data set (not necessarily a data stream). This should not be viewed
as an extensive study of all published clustering algorithms, but
only of those that have aimed to incrementally cluster data sets.
On purpose we have not included any algorithm that uses
sampling to scale to large data sets, since sampling would defeat
the aim of clustering data streams. We study whether or not these
algorithms meet the requirements established in the previous
section.

4.1 BIRCH

BIRCH [12] builds a hierarchical data structure, the CF-tree —a
height-balanced tree-, to incrementally cluster incoming points.
Each node in the tree is defined by a CF-vector of statistical
measures representing the set of nodes under that node. BIRCH
tries to come up with the best clusters with available main
memory, while minimizing the amount of I/O required. The CF-
tree can be thought as storing a hierarchical clustering model in an
agglomerative fashion, making it possible to cluster sub-clusters
represented by their CF-vectors. Results can be improved by
allowing several passes over the data set, but in principle one pass
suffices to get a clustering, so the complexity of the algorithm is
O(N). Since each node in the tree has predefined limited capacity,
the clusters do not always correspond to natural shapes. (In [8], it
is reported that BIRCH does not perform well for non-spherical
clusters; our own experience confirms that observation.)

e Compactness: BIRCH is designed to store the cluster
representation in secondary memory (the CF-tree, is,
after all analogous to a B-Tree). Even though the
design of the algorithm stores the initial (seed) clusters
in a main-memory CF-tree, it is clear that after that, the
CF-tree should be let to grow in secondary memory.
Therefore, the representation is not as compact as it is

SIGKDD Explorations.

required to process data streams. This fact is aggravated
as the dimensionality of the set increases. In our
experience, the secondary memory representation grows
very fast as the set goes beyond 3 or 4 dimensions.

* Function: Even though it tries to minimize the I/O
requirements of clustering a new point, it still takes a
considerable amount of time to do so. The processing of
points is better served in batches to try to amortize the
overall cost.

e Outliers: A number of bytes is reserved in BIRCH to
handle outliers that do not fit well the clusters defined
by the CF-tree. BIRCH periodically re-evaluates these
outliers to see if they can be absorbed in the current tree
without making it grow in size. Potentially, this features
can be used to track changes in the clustering model, as
exposed in Section 3.

4.2 COBWEB

COBWEB [4] is an incremental clustering technique that falls
under the class of conceptual clustering algorithms (intended to
discover understandable patterns in data). COBWEB uses the
category utility function [6] to guide classification and tree
formation. COBWEB keeps a hierarchical clustering model in the
form of a classification tree. Each node contains a probabilistic
description of the concept that summarizes objects classified
under that node. For a new point, COBWEB descends the tree
along an appropriate path, updating the counts in the interior
nodes along the way and looks for the best node to place the point
on, using the category utility function.

* Compactness: This classification tree is not height-
balanced which often causes the space (and time)
complexity to degrade dramatically. This makes
COBWESB an ill choice for data streams clustering.

* Function: again, due to the cluster representation
problem, the time complexity of adding a new point to
the clusters might degrade dramatically.

e Outliers: COBWEB analyzes the result of placing a new
point on a new node, created specifically for this point
and computes (using the category utility function)
whether this is a better choice than placing the point in
one of the current clusters. In that way, outliers can be
identified.

4.3 STREAM

By this name we denote the algorithms described in [5],[10],
which aim to provide guaranteed performance, i.e., whose
solution is guaranteed to be no worse than a number of times the
optimal. The optimal solution (whose finding is intractable) is
understood to be the one that minimizes the sum of square
distance measure (SSQ), i.e., the sum of the square of the
distances of points to the & cluster medians or centroids. This is an
objective similar to the one K-Means aims to minimize, following
an iterative heuristic. However, K-Means does not guarantee any
bounds. Notice that by minimizing SSQ, the algorithm tends to
find hyper-spheres as clusters, independently of the true nature of
the data clusters, which can be of arbitrary shape.

Volume 3, Issue 2 — page 25

STREAM processes data streams in batches of points, each fitting
in main memory. For each batch Bj, STREAM clusters the points
in it, and then, retaining the weighted cluster centers C; (the

centroids weighted by the number of points attracted to them). C;
is a set of centroids corresponding to the i-th batch of points.
Then STREAM clusters the weighted centroids retained for each
batch examined so far, i.e., Cop,...,C; , obtaining a clustering
model. In both instances (the clustering of the batch and the
clustering of the batches’ centroids)), STREAMS uses an
algorithm, LOCALSEARCH, which runs in asymptotically linear
time with respect to the number of points. The algorithm
LOCALSEARCH insures that the solution is bounded by no more
than a constant to the optimal one (in terms of SSQ).

¢ Compactness: The representation of current clusters is
compact, as it requires only the list of the C;j sets, i.e.,

the set of centroids corresponding to each batch Bj. The
size of this representation, however, increases as more
batches are processed, since the number of sets of
centroids is always increasing.

e Function: the function to incrementally cluster the items
runs in time asymptotically linear with respect to the
number of points. For the first iteration, to find the
clusters in the current batch, this time is always the
same (if the batches are of equal size). However, the
time taken for the second iteration, i.e., the clustering of
centroid sets increases without bound as more batches
of the data stream arrive. Moreover, even though
LOCALSEARCH is an asymptotically linear algorithm,
it is recognized by its authors [10] to take longer than
K-Means to find a bounded solution.

e OQutliers: There are no provisions in [10] for outliers. If
a sufficient number of them occur in a new batch, the
centroids found for that batch will be substantially
different from the centroids for previous batches. If the
same number of clusters is input to LOCALSEARCH,
the procedure will find hyper-spheres that capture both
the old and the new centroid sets. This, in fact, may be a
distortion of the real clusters in the data, and will
effectively mask the emerging trend of clusters.

4.4 Fractal Clustering

This algorithm, presented in [1] defines clusters as sets of points
that exhibit self-similarity [7]. Fractal Clustering (FC) clusters
points incrementally, placing them in the cluster in which they
have the minimal fractal impact. That is, the cluster that changes
its fractal dimension in the least when the point is placed in it. FC
has the capacity of finding clusters of arbitrary shape.

e Compactness: FC defines a grid of boxes (hyper-cubes
whose dimensionality is equal to that of the points in the
data set) at the lowest range of measurements (defined
by the size of each box) and keeps count of the
population of each box as points are being clustered. FC
does not need to keep the actual points after they are
clustered, since the box populations suffice to compute

SIGKDD Explorations.

the fractal dimension (for example, by using a box-
counting plot). Populations of the boxes at higher
ranges are simply calculated by aggregating those on the
lowest range. As such, the size of this representation
does not depend on the number of points already
processed, but rather on the dimensionality of the set
and the size of the smallest box (at the lowest range).
Our experiments have shown that as little as 2
Megabytes are enough to perform clustering for a 10-
dimensional data set. Of course, as the number of
dimensions grows, so does the number of boxes
involved in the representation. However, it is also true
that the number of populated boxes in high dimensional
spaces is small compared to the total number of boxes.
By keeping only the populated boxes, one can save a
considerable amount of space. Our experiments show
that even discarding boxes that have small populations
(e.g., 1 point), the results remain consistently good.

* Function: whenever a new point needs to be clustered,
the function that decides where this point is placed is
based on the computation of the new fractal dimension
of each cluster considering that the point is placed on it.
Again, since FC uses box populations (as opposed to
the set of points already clustered), the function takes
time proportional to the number of boxes (which in turn
is dependent on the dimensionality of the set). Again,
the higher the dimensionality, the more boxes there
exist, but since the computation involves only populated
boxes, the complexity remains very acceptable.
Moreover, recent work has shown that it is possible to
compute this function in linear time with respect to the
boxes (see [9]).

* Outliers: FC defines as outliers those points whose
fractal impact exceeds a certain threshold. Intuitively, if
a point changes the fractal dimension of every cluster
too much, it is considered an outlier.

5. Directions

These are the research directions that we consider fruitful for
future work in the area of clustering data streams:

* Finding appropriate ways of representing and dealing
with the evolution of clusters in a data stream: as new
points indicate the need for other clusters to be formed,
it is important to have an automatic way to decide what
to do with the clusters we have found so far. Although,
it is likely that the decision will depend on the nature of
the data at hand, automating the process as much as
possible is a very desirable goal. Moreover, a way to
present the evolution of the clusters to the user would
be extremely useful, since that information is likely to
be usable knowledge.

* Finding tighter bounds for the process of tracking
cluster changes: Chernoff bounds are known to be
conservative in their estimates. Finding alternative,

Volume 3, Issue 2 — page 26

tighter bounds that can do the job is an important area
of research.

e Successfully applying the techniques to real data sets:
This last point requires the collaboration of data mining
researchers with domain experts, in order to carefully
evaluate the results and determine if they produce
usable knowledge for the application at hand.

6. Conclusions

In this paper we have summarized a simple set of conditions for
data stream clustering algorithms. An important requirement,
often ignored by algorithm designers, is the need for a clear
separation of outliers in the data stream, as sufficient number of
these might indicate that a change in the clustering model is
needed. We have provided analytical tools to effectively track
these changes. Out of the algorithms reviewed, FC is the only one
so far that completely fulfills the requirements. We are currently
engaged in developing a similar algorithm to process categorical
data (which uses entropy as the optimizing criteria). We also aim
to produce a technique that can cope with mixed (numerical and
categorical) data, by merging results of an algorithm (like FC) that
deals with numerical data with those of an algorithm for
categorical data.

7. Acknowledgments

| would like to acknowledge Ping Chen, Julia Couto, and Yi Li,
who have taken an active role in designing and implementing FC
and the upcoming categorical clustering algorithm. My interaction
with them has helped enormously in shaping the ideas expressed
in this paper.

8. REFERENCES

[1] Barbard D., and Chen, P. Using the Fractal Dimension to
Cluster Datasets. Proceedings of the ACM-SIGKDD
International Conference on Knowledge and Data Mining,
Boston, August 2000.

[2] Barbard D., and Chen, P. Tracking Clusters in Evolving Data
Sets. Proceedings of FLAIRS'2001, Special Track on

Knowledge Discovery and Data Mining , Key West, May
2001.

[3] Chernoff, H. A Measure of Asymptotic Efficiency for Tests
of a Hypothesis Based on the Sum of Observations. Annals
of Mathematical Statistics, Vol. 23, pages 493-509, 1952.

SIGKDD Explorations.

[4] Fisher D.H. Iterative Optimization and Simplification of
Hierarchical Clusterings. Journal of AI Research, Vol. 4,
pages 147-180, 1996.

[5] Guha S., Mishra N., Motwani R., and O'Callaghan L.
Clustering data streams. Proceedings of the Annual
Symposium on Foundations of Computer Science November
2000.

[6] Gluck M.A., and Corter J.E. Information, uncertainty, and
the utility of categories. Proceedings of the Seventh Annual
Conference of the Cognitive Science Society, Irvine, CA,
1985.

[7] Schroeder M. Fractal, Chaos, Power Laws: Minutes from an
Infinite Paradise. W.H. Freeman and Company, 1991.

[8] Sheikholeslami G., Chatterjee S., and Zhang A.
WaveCluster: A Multi-Resolution Clustering Approach for
Very Large Spatial Databases. Proceedings of the 24th Very
Large Data Bases Conference, 1998.

[9] Traina, A., Traina, C., Papadimitriou S., and Faloutsos, C.
Tri-Plots: Scalable Tools for Multidimensional Data Mining.
Proceedings of the 7" ACM SIGKDD International
Conference on Knowledge and Data Mining, San Francisco,
August 2001.

[10] O'Callaghan L., Mishra N., Meyerson A., Guha S., and
Motwani R. High-Performance Clustering of Streams and
Large Data Sets. International Conference on Data
Engineering (ICDE) 2002 (to appear).

[11] Watanabe, O. Simple Sampling Techniques for Discovery
Science. IEICE Transactions on Inf. & Syst., Vol. E83-D,
No. 1, January, 2000.

[12] Zhang T., Ramakrishnan R., and Livny M. "BIRCH: A
Efficient Data Clustering Method for Very Large Databases.
Proceedings of the ACM SIGMOD Conference on
Management of Data, Montreal, Canada, 1996.

About the authors:

Daniel Barbard is an Associate Professor in the Information and
Software Engineering Department at George Mason University.
His current research interests are Data Mining and Data
Warehousing. Previously, he has worked in Bell Communication
Research and Panasonic Laboratories. He earned a Ph.D. from
the Computer Science Department of Princeton University in
1985.

Volume 3, Issue 2 — page 27

