Interactive Mining and Knowledge Reuse for the Closed-
Itemset Incremental-Mining problem

Luminita Dumitriu
Department of Computer Science and
Engineering, "Dunarea de Jos"
University,
str. Domneasca nr. 47,

Galati 6200, Romania.

Luminita.Dumitriu@ugal.ro

ABSTRACT

Using concept lattices as a theoretical background for finding
association rules [11] has led to designing algorithms like Charm
[10], Close [7] or Closet [8]. While they are considered as
extremely appropriate when finding concepts for association rules,
due to the smaller amount of results, they do not cover a certain
area of significant results, namely the pseudo-intents that form the
base for global implications. We have proposed an approach that,
besides finding all proper partial implications, also finds the
pseudo-intents. The way our algorithm is devised, it allows certain
important operations on concept lattices, like adding or extracting
items, meaning we can reuse previously found results. It is a well-
known fact that mining association rules may lead to a large
amount of results. Since, the mining results are meant to be
understood by the user, we have come to the conclusion that he
will benefit more from starting small, with some of the items in
the data base, understand a small amount of results, and then add
items receiving only the extra-results. This way the number of
human interventions during the "full" mining process is increased
and the process becomes user-driven.

Keywords

Frequent itemsets, association rules, formal concept analysis.

1. INTRODUCTION

Lately, corporations have made serious investments into using
information technology to increase their management quality.
Also, large amounts of important business data are now stored in
database systems and their quantum is expected to grow. An
important goal of data mining is to extract valuable implicit
patterns from large quantities of data.

Association rules, introduced by [1], provide useful means to
discover associations in data. Let I = {iy, iy, ... , im} be a set of m
literals called items. Let the database D = { 13, t, ..., t,} be a set of
n transactions, each transaction consisting of a set of items | of |
and associated with a unique transaction identifier called tid. | is
called a k-itemset if K is the size of |. A transaction tOD is said to
contain an itemset | if 1/7t. The support of an itemset | is the
percentage of transactions in D containing |: support(l) = I{t OD |
| Ot} / I{tOD}l. An association rule is a conditional implication
among itemsets, / = I', where itemsets I, I' I and / nl' =00. The
confidence of an association rule r : I = |' is the conditional
probability that a transaction contains ', given it contains I:
confidence(r) = support (O I') / support (). The support of r is
defined as support(r) = support 1 O 1').

SIGKDD Explorations.

The problem of mining association rules in a database is defined

as finding all the association rules that hold with more that a user-

given support threshold, minsup, and a user-given confidence

threshold, minconf. According to [1] this problem is solved in two

steps:

1. Finding all frequent itemsets in the database, meaning
itemsets with support higher than or equal to minsup.

2. For each frequent itemset |, generating all association rules I’
= I\I', where I' O |, with confidence greater than or equal to
minconf.

The second problem can be solved in a straightforward manner
after the first step is completed. Hence, the problem of mining
association rules is reduced to the problem of finding all frequent
itemsets. This is not a trivial problem, since the number of
possible frequent itemset is equal to the size of the power set of |,
2"l There are many algorithms proposed in the literature, most of
them based on the Apriori mining method [2], that relies on a
basic property of frequent itemsets: all subsets of a frequent
itemset are frequent. This property can also be said as all
supersets of an infrequent itemset are infrequent. This approach
works well on weakly correlated data such as market basket data.
Over correlated data, such as census data, there are other
approach, as Close [7], CHARM [10] and Closet [8], which are
more appropriate. These approaches search for closed itemsets,
structured in lattices that are closely related with the concept
lattice in formal concept analysis [9]. The main advantage of a
closed itemset approach is the smaller size of the resulting concept
lattice versus the number of frequent itemsets, i.e. a search space
reduction.

In this paper, we propose a new approach that is also a closed
itemset approach, but is more user-oriented; it takes into account
the fact that an association rule mining process leads to a large
amount of results, that is, most of the time, difficult to understand
by the user. To prevent this to happen, we add a user-selection to
the process: the interesting frequent items. This way we build a
partial, easier to understand, model of the data. We still have to
provide means to model all the data. To achieve this goal, our
approach allows the user to pick a previously found partial data
model (expressed as a concept lattice and a data context) and
some new frequent items to be added to it, thus obtaining an
extended or even a full data model. The results of an extension
operation consist of the supplementary results, the &model. The
reverse operation to the extension of a model is reducing a model
with some frequent items; we have considered it to be used

Volume 3, Issue 2 — page 28

whenever a large data model is incomprehensible to the user. The
main advantages of our approach are:

- a smaller size of results leads to a higher comprehensibility
of a data model or a &mode!;

- the data models can be reused, when extending or reducing
them with sets of items, thus sparing the time spent building
them;

- the mining process becomes more user-driven than data-
driven.

We have also considered the data model to be extended with the
base for generating rules with confidence = 1, the pseudo-intents.

The rest of the paper is organized as follows. Section 2 reviews
related work and compares it with the contribution of the paper.
Section 3 describes the new mining process. In section 4 we give
some experimental results. The paper is concluded in section 5.

2. RELATED WORK AND
CONTRIBUTIONS

In this section we first describe the use of Apriori-type approaches
and the advantage of using closed itemset lattices as theoretical
framework for the closed itemset-type approach. In the end, we
briefly describe our method.

2.1 Apriori and closed itemset approaches
Let's consider the example database in Figure 1.

Generating all possibly frequent itemsets and testing their support
is clearly an impracticable solution when m, the cardinal of I, is
large. The Apriori methodology is described as follows.

First, the items in | are sorted in lexicographic order. The frequent
items are computed in one pass over the database. They are stored
in the set L; of frequent l-itemsets. For each iteration i, a
candidate set, C;, is computed joining L, with itself. In a database
scan the support for each candidate in C; is computed. The
frequent itemsets found in C; are stored in L;, the set of frequent i-
itemsets, and C; is discarded. The process continues until all
candidates are infrequent.

The join operation in iteration i selects pairs of i-1l-itemsets
having i-2 items in common, reuniting their elements into a
candidate of size i. Afterwards, the candidates that do not have all
their subsets of i-/ items in L;_; are pruned.

The number of effective iterations is equal to the height of the
frequent itemset lattice.

Let's see how Apriori does on the example database in Figure 2.
Iteration 1:

- database scan results into Ly = { A, B, C, D, E}
with support(A) = 6, support (B) = support(D) =
support(E) = 4 and support(C) = 5.

Iteration 2:
- join phase L; * L; = {AB, AC, AD, AE, BC, BD,
BE, CD, CE, DE}
- no pruning, C= L; * L

- database scan results into L, = {AB, AC, AD, AE,
BC, BD, CD, CE}, where the support of AC is 5,
the support of AB, AD, AE, BC is 4 and the
support of BD, CE, CD is 3.

Iteration 3:

- join phase L, * L, = {ABC, ABD, ABE, ACD,
ACE, ADE, BCD, BCE, BDE, CDE}

- pruning ABE, ADE, BCE, BDE, CDE, C;={ABC,
ABD, ACD, ACE, BCD}

- database scan results into Lz = { ABC, ABD, ACD,
ACE, BCD }, where the support of ABC is 4 and
the support of ABD, BCD, ACE, ACD is 3.

Iteration 4:
- join phase L3 * L3 = {ABCD, ABCE, ACDE }
- pruning ABCE, ACDE, C,={ABCD }

- database scan results into L4= { ABCD}, where the
support of ABCD is 3.

Iteration 5:
- join phase L4 * Ly =0.
- no pruning, C, =0.
In the end, Apriori finds the 19 frequent itemsets we can see in
Figure 1.
The closed itemset approach is described in the following.

We define a context, the Galois connection of a context, a concept
of the context, a lattice of concepts. For a more details on lattice
theory see [9].

A context is a triple (T, |, D) where T and | are sets and D OTxI.
The elements of T are called objects and the elements of | are
called attributes, For any t OT and i O I, we note tDi when t is

Database items

Bread Butter Milk Jam Cereals

A B C D E
All frequent itemsets,
Transaction Items for minsup=50%
1 ABCD ltemsets Support
2 ACE A 100%;
3 ABCD C, AC 83%,;
4 ABCE B, D, E, AB, AD, AE, BC, ABC 67%,;
5 ABCDE BD, CE, CD, ABD, BCD, ACE, ACD, 50%.
6 ADE ABCD
Figure 1: Example database and associated frequent itemsets.
SIGKDD Explorations. Volume 3, Issue 2 — page 29

related to i, i.e. (t,i) OD.

Let (T, I, D) be a context. Then the mappings
s:O0M-0OW),sX)={:O11(0Ot0X) tDi }
tO0)-0O(M,s(Y)={:OTI(OiOY)tDi}

define a Galois connection between O (T) and O (), the power
sets of T and I, respectively.

A concept in the context (T, I, D) is a pair (X, Y), where X(I T,
YOI, s(X)=Y and t(Y)=X. X is called the extent and Y the intent
of the concept (X,Y). This leads to s°t(Y) = s(X) =Y and t°s(X) =
t(Y)=X being closure operators.

A concept (X', Y') is a subconcept of (X,Y), denoted (X',Y") <
(X,Y), iff X'OX Gff Y'OY).

Let C be the set of concepts derived from D using the Galois
connection. The pair L=(C, <) is a complete lattice called a lattice
of concepts.

The closed itemset approach uses from the concepts only their
intent. Some of the frequent itemsets found in the previous section
are not closed itemsets. For example, the itemset ABD, where
t(ABD) = { 1, 3, 5}, but s({1, 3, 5})=ABCD. The frequent closed
itemsets for the example database in Figure 2 are C = {A, AC,
AD, AE, ABC, ACE, ABCD}. The lattice L is represented in
Figure 2.

As we can observe, there are 7 frequent closed itemsets and 19
frequent itemsets. Ignoring the itemsets that are not closed is a
significant pruning criterion for the search space. A closed itemset
in the context of mining association rules is the maximal itemset
of a collection of itemsets that share the same transaction set.

We will present the CHARM method for finding closed itemsets.
First, the frequent items are found, along with their transaction
sets. In the order defined on I, the first frequent item iy is picked.
The algorithm attempts extending this item with i,. The support of
the new itemset is computed while intersecting the transaction sets

(13,5, ABCD)
Q

(2,4,5; ACE)

(1,3,4,5; ABC)
Q o]

(2,456, AE) (12,3,4,57AC) (1,3,5,6: AD)
o] o] o
19
(1,2,3,4,5,6; A)
[¢]

Figure 2: The closed-itemset lattice for the example
database

of the two items. There are 4 cases to take into account:

SIGKDD Explorations.

- if the new itemset is infrequent, i, is extended with
i3, continuing in a depth-first manner;

- if the transaction set of the new itemset is equal to
the one of iy, then i; is replaced with the new
itemset, and we continue extending the new itemset
with the next frequent item,

- if the transaction set of the new itemset is equal to
the one of i, then i, is discarded and the new
itemset is added as a child of iy, and we continue
extending the new itemset with the next frequent
item;

- otherwise, the new itemset is added as a child of i4,
and we continue extending it with the next frequent
item;

When there are no more items to extend the current itemset with,
the algorithm picks the next itemset in a depth first manner.

We will demonstrate how CHARM works on the example
database, considering the lexicographic order.

Step 1. CurrentNode = root;

children(CurrentNode) = { (A; 1,2,3,4,5,6), (B; 1,3,4,5),
(C; 1,2,3,4,5), (D; 1,3,5,6), (E; 2,4,5,6)}

Step 2. CurrentNode= A, ItemToExtendWith= B,
Newltem = (AB; 1,3,4,5) - same as B

children(root) = { (A; 1,2,3,4,5,6), (C; 1,2,3,4,5), (D;
1,3,5,6), (E; 2,4,5,6)};

children(A) ={(AB; 1,3,4,5)}

Step 3. CurrentNode= AB, ItemToExtendWith= C, Newltem =
(ABC; 1,3,4,5) - same as AB

children(A) ={(ABC; 1,3,4,5)}

Step 4. CurrentNode= ABC, ItemToExtendWith= D, Newltem =
(ABCD; 1,3,5) - different

children(ABC) ={(ABCD; 1,3,5)}

Step 5. CurrentNode= ABCD, ItemToExtendWith= E,
Newltem = (ABCDE; 5) - infrequent

Step 6. CurrentNode= ABC, ItemToExtendWith= E, Newltem =
(ABCE; 95) - infrequent

Step 7. CurrentNode= A,
(AC; 1,2,3,4,5) - same as C

children(root) = { (A; 1,2,3,4,5,6), (D; 1,3,5,6), (E;
2,45,6)},;

children(A) ={(ABC; 1,3,4.5), (AC; 1,2,3,4,5) }

Step 8. CurrentNode= AC, ItemToExtendWith= D, Newltem =
(ACD; 1,3,5) - different

children(AC) ={(ACD; 1,3,5)}

Step 9. CurrentNode= ACD, ItemToExtendWith= E, Newltem =
(ACDE; 3,5) - infrequent

Step 10. CurrentNode= AC, ItemToExtendWith= E, Newltem =
(ACE; 2,4,5) - different

children(AC) ={(ACD; 1,3,5), (ACE; 2,4,5)}

Step 11. CurrentNode= A, ItemToExtendWith= D, Newltem =
(AD; 1,3, 5, 6) - same as D

ItemToExtendWith= C, Newltem =

Volume 3, Issue 2 — page 30

children(root) = { (A; 1,2,3,4,5,6), (E; 2,4,5,6)};

children(A) ={(ABC; 1,3.4,5), (AC; 1,2,3,4,5) (AD;
1,3,5,0)}

Step 12. CurrentNode= AD, ItemToExtendWith= E, Newltem
(ADE,; 5, 6) - infrequent

Step 13. CurrentNode= A,
(AE; 2,4, 5, 6) - same as E

children(root) = { (A; 1,2,3,4,5,6)}

children(A) ={(ABC; 1,3.4,5), (AC; 1,2,3,4,5) (AD;
1,3,5,6), (AE; 2,4, 5,0) }.

ItemToExtendWith= E, Newltem

The algorithm ends, finding the following closed itemsets: (A;
1,2,3,4,5,6), (AC; 1,2,3,4,5) (AD; 13,5, 6), (AE; 2, 4, 5, 0),
(ABC; 1,3,4,5), (ACE; 2,4,5), (ABCD; 1,3,5), as in Figure 2. The
(ACD; 1,3,5) element is discarded, since ABCD is the closed
itemset for this transaction set. The CHARM algorithm does not
determine the association rules.

2.2 Our approach

The common part of our approach with CHARM, for example, is
the extension idea. The difference is that we extend a lattice built
on a subset of | with some new frequent items. Other approaches,
for example the one described in [5], that are operating on
concept lattices are row-by-row oriented

The basic observation for our approach relies on a property of a
non closed itemset. An itemset i is not a closed itemset, because
there is a closed itemset ¢, where i[] ¢ and t(i) = t(c). If we select
from t(c) the subset of transactions containing some itemset i',
where i' is disjoint with ¢, we find that the resulting transaction set

(1,3,5; ABCD)
o)

//’—-—s\\\
:)
(1,3,4,5; ABC) (135 ACD)
0 N
\\ //
(12,3,4.5; AC)
3 (1,3,5,6; AD)
o
(123,456, (1,35, 6, D) "1
7 _ .0
L3 (6]
L'y

frequent items, we will obtain a cover set for all the closed
itemsets involving the new frequent items.

We consider the basic operation of extending the closed itemset
lattice with one frequent item at a time.

Lets say we already have the lattice for {A, B, C} and we want to
extend it with {D, E}. As we can see in Figure 3, we practically
make a copy of the initial lattice with new, extended itemsets. We
eliminate itemsets D and ACD, since they are not closed, and we
have the lattice for the { A, B, C, D} set of items. We extend it
with E. There are only a few frequent itemsets from the extended
ones and the itemset E is not closed because of AE. After
eliminating E, we obtain the same frequent closed itemset lattice
as CHARM does.

Until now, the main difference between our approach and
CHARM is that we can start from a previously found lattice.

Now, we can find all rules with confidence smaller than 1. The
association rules with confidence equal to 1 can be expressed
through a base from which every rule can be generated. As shown
in [4]: The set {X - «(X)\ X | X is a pseudo-intent} is a base for
all global implications, where c is the closure operator, and X is
a pseudo-intent if X Z ¢(X), and for all pseudo-intents Q[7X, c(Q)
LX.

The fact that X # ¢(X), tells us that X is not a closed itemset. For
the initial lattice built on {A, B, C} we have 3 itemsets that are
frequent, but not closed: {B, C, BC}. Since c¢(B) = ABC,
¢(C)=AC and they do not include any other itemset, we can say
that B and C are pseudo-intents, while BC is not, since BU BC,
but ABCOBC. Thus, the base for global implications consists of
B - AC and C- A rules of confidence 1. What happens when we
extend the initial lattice with D is that we find some new potential

(1,3,5; ABCD)
o)

(1,3,4,5; ABC)

(2,4,5; ACE)
< @)

(1,2,3,4)5; AC)
Q 2,4,5,6; AE)
o

-
- N

(1,3,5,6; AD)
o}

N\
(1,2,3,4,%6;) /|2.4,5.6;:E) \
2 C) /

4
a7

L4 G

L's

Figure 3: Extending the previously found lattice with frequent items D and E

is one and the same for both the i 0 i' and ¢ O i' itemsets. Thus, i
0i’ will never be a closed itemset, any i' disjoint with ¢. We will
call this property the non-closure up-propagation. This means
that no closed itemset can originate in a non-closed itemset
through extension with a new item. Thus, extending all closed
itemsets in the lattice built on a subset of | with some new

SIGKDD Explorations.

pseudo-intents {D, ACD} and after extending with E, we add E to
this set, too. We have c(D)=AD, c(ACD)=ABCD and c¢(E)=AE.
All of them are pseudo-intents in the context of the new lattice
and the old ones remain pseudo-intents as well.

In fact, the situation is not always this simple. Let's consider
another initial lattice, namely the one built on {B, C, D, E}, and

Volume 3, Issue 2 — page 31

let's extend it with the A item. As we can see in Figure 4, the
initial lattice contains the frequent closed sets {C, D, E, BC, CE,
BCD}. The frequent itemsets that are not closed are B and CD.
For this lattice we have ¢(B)=BC and ¢(CD)=BCD, both of them
being pseudo-intents.

When we extend the lattice with A, the itemsets C, D and E
become not closed, due to AC, AD and AE, respectively, and this
relationship propagates over their subconcepts when extending
them with A. Thus, all the previously closed itemsets become not
closed. We can prove that storing only the rules C - A, D - A and

e ———
~
- ~

[/ 1,3,5BCD)
(A

Sl T
/”— \\\\ /,/ ’’’’’ \\\
I (245 CE) ;-1 (1345 BC))
\\\ // \\\ ,/
Pog N P ~ LT T Y
/ ~ 7’ <
| (2,4,5/6;E) (A, Cen) 1 (13956TD) y
N & ¥ l\(1,4,361,5.C) N o J

~
S a7 S 4 ~ -

itemset involving an item to be eliminated, we have to check the
existence of the reduced itemset and, if it does not exist, we create
it with the same support. If we keep track of the base of global
implications we deal with two steps:

— we eliminate the current item from the left-side or from right-
side of the rule, if it exists;

— if either the left-side or the right-side of the rule becomes
empty, the rule is discarded.

(1,3,5: ABCD)
(6}

(2,4,5; ACE) (1,3,4,5{ ABC)
0. (0]

(2,4)5,6; AE) (1,3,5,6; AD)
[¢) o)

(1,2:3.4!5; AC)
o)

(1,2,3;4,5,6,4)
[0]

Figure 4: Extending a previously found lattice with the frequent item A

E- A, called generating rules, along with the old pseudo-intents,
we can calculate the pseudo-intents for the final lattice. The list of
corresponding closed itemsets is: ¢(B)=ABC, c¢(CD)=ABCD,
c¢(C)=AC, ¢(D)=AD, c(E)=AE. The l-frequent itemsets in the list
are pseudo-intents since there are no other pseudo-intents to
cancel their status. CD is not a pseudo-intent since there are C and
D to contradict it. If we add to CD the missing items from c¢(C),
namely ¢(C)\C = A, we get ACD, that is still an itemset that is not
closed, belongs to the same closed itemset as CD, and respects the
definition of a pseudo-intent. If the newly constructed itemset was
a closed itemset, we could not calculate a pseudo-intent starting
from that itemset.

An important observation is referring to situations as the one in
Figure 4. If we find a rule with confidence equal to 1, for all the
supersets of the itemset that becomes not closed, we don't need to
calculate the support of their extended itemsets, since they are
equal to one another. Thus, confidence(C—-A) = 1 leads to
confidenceBC-A) = 1, confidenc(CE-A) = 1,
confidence(BCD -~A) = 1, so support(C) = support(AC),
support(BC) = support(ABC), support(CE) = support(ACE). We
consider this situation, whenever it occurs, as a significant
pruning criterion to calculating the support of an extended
itemset.

Another operation we have considered is reducing a lattice of
closed itemsets with some items. The only way the initial lattice is
affected during the extension operation is as in Figure 4, when the
original closed itemset becomes not closed and disappears.
Keeping this observation in mind, we conclude that, for a closed

SIGKDD Explorations.

2.3 Implementing extension and reduction of
concept lattices
2.3.1 Representation

In our approach, one concept is represented by an index to its
contents, that consists of the concept intent, the support
information and the list of indices to its adjacent subconcepts.

The concept indices are numbers. When stored in a data model the
numbers are consecutive. The itemsets generated when extending
a data model are numbered corresponding to their occurrence,
starting from the number of concepts in the data model. One
major advantage of this numbering is the possibility to quickly
identify the new itemsets from the old concepts.

The list of adjacent subconcepts of a concept is needed in order to
find all non-concepts, while extending the model. The lists are
updated when removing non-concepts from the newly generated
itemsets. The lists also represent association rules, when minconf
is exceeded.

Whenever it is the case and definitely when saving a model, the
concepts are renumbered, to consecutive indices and their
adjacent subconcept lists are updated.

2.3.2 Pseudo-intents and generating rules

A pseudo-intent is represented as a pair of its description and the
index of its associated concept. We do not have to store all global
implication rules, only the so-called generating rules are needed
in order to compute the pseudo-intents. There are two kinds of
global implication rules that can lead to generating rules, ones

Volume 3, Issue 2 — page 32

between concepts and their extended itemset, as C - A in Figure
4, and ones between new itemsets as E — A in Figure 3. A global
implication rule X - X"\X, found while extending a data model, is
a generating rule if any other implication rule Y- Y\Y found,
with YOX, has Y'IX.

In the case of Figure 4, C - A is a generating rule and all global
implications concerning the subconcepts of C are not, because AC
cannot be included in any of C subconcepts in the original lattice.
We have proved, for this kind of generating rules, that all the
global implications concerning the subconcepts of the antecedent
cannot be pseudo-intents.

In the case of Figure 3, when extending the concept lattice with D,
we have two global implications: D - A and ACD - B. They are
both generating rules because both D and AD are included in
ACD. We have proved, for this kind of rules, X - X', that all
global implications concerning super-itemsets of X, that are not
super-itemsets of XX, can not be pseudo-intents.

We have also proved that any pseudo-intent is either the
antecedent of a generating rule or can be computed from it.

2.3.3 Extending a data model

We will consider extending a data model with a frequent item as a
basic operation. If several items are involved we, step-by-step,
extend the model with each of the items.

First, we build all new frequent itemsets, extending original
concepts with the current item. We start with the empty concept in
a queue of concepts, and while it is not empty, we extend the head
of the queue; if the new itemset is frequent, we number and store
it along with the original concept index and we place its adjacent
subconcepts in the queue.

When we extend the current concept in the queue, we check the
partial list of generating rules corresponding to the extension in
process if the concept includes one of the antecedents in the list;
in this case, we will have a non-closure up-propagation, and we
don't need to compute the support information for the new
itemset, because it is the same with the concept's support. If it is
not the case, we compute the support information and, if frequent,
we check for a new generating rule case. If so, we record the
generating rule in the current list.

Computation of support information can be done as in CHARM
or in Closet, depending on the nature of the database, sparse or
dense. The transactions that count for the support computation are
only the ones concerning the items we extend the model with.

Afterwards, for all new itemsets we build adjacent super-itemset
lists, based on the itemsets extended from the adjacent
subconcepts of the original concept, as in Figure 5. We also check
the new itemsets for being non-concepts, and we store generating
rules, if needed.

All concepts and new itemsets found as non-concepts are marked
when found. For any itemset or concept that is not marked we
build the correct adjacent subconcept list (consisting of unmarked
subconcepts checked for adjacency) and we remove all non-
concepts.

In the end, we store the partial list of generating rules along with
the original pseudo-intents.

When extension is completed, we compute the pseudo-intents
associated to the final data model.

SIGKDD Explorations.

2.34 Reducing a data model

Legend:
old rules — CDi

extra rules

new rules

A A, A

Figure 5: New concepts and new rules when extending a
data model

Reducing a data model is much simpler than extending one. We
will also consider reducing a model with one item, i. For all
concepts in the model that include the item, we check if the
reduced itemset is a concept in the current model or not. If it is,
we simply remove those concepts. If it is not, we keep all the
concept information, including the index, except for the intent,
replacing it with the reduced itemset. The reason behind this
decision is that, when extending with the same item, only the
reduced itemset would lead to the generation of that concept, thus
the reduced itemset had to be a concept. The lists of adjacent
subconcepts remain the same, because if the reduced itemset
became a non-concept while extending, all its subconcepts
became non-concepts, so they will all be retrieved as this one.

For all pseudo-intents or associated concepts that contain i, we
remove the item. If the antecedent or the consequent of the global
implication become empty, we discard the pseudo-intent. If the
reduced antecedent is also concept, we have to check if itemsets
that include the reduced antecedent and are include by the
reduced associated concept can be pseudo-intents.

2.4 Defining and operating with data models
For our approach, a data model for the association rule problem
consists of three components:

— the mining context;
— the corresponding results;
— the observations added by user.

There is no question on the necessity of the results in the data
model. The only issue is whether we keep track of the pseudo-
intents or not. We represent the results as the set of closed
itemsets and their associated support information and, when
needed, the set of pseudo-intents and their associated closed
itemsets.

The mining context stores information on the set of frequent items
and the transactions involved in building the model. We also have
to store the minsup value; otherwise the results have no relevance.

The user added information is optional and it is meant to record
his remarks on the contents of the data model, as a remainder.

When choosing a data model to be extended, we have to check the
mining context in order to refer the same transactions, with at
least minsup for the support threshold, while extending the model
with new frequent items. If we look for pseudo-intents we can
only choose a previously found model containing associated

Volume 3, Issue 2 — page 33

pseudo-intents. The minconf parameter does not affect choosing
the model, since we store the set of frequent closed itemsets, not
the association rules.

The correctness of the data model extension can be proved as
follows:

P1. We extend the lattice Ly with i1, obtaining L'y,;. We say that
I-k O L'k+1 0 Lk+1-

P,. We eliminate non-closed itemsets from Ly [J L'y.;. We say the
result is Ly.;. If we keep track of pseudo-intents, we add to their
set all generating rules found during the elimination phase.

Ps. Processing the set of potential pseudo-intents, we can calculate
all pseudo-intents associated to the lattice of closed itemsets.

The correctness of the data model reduction can be proved as
follows:

P'1. We eliminate from Ly all closed itemsets involving iy; when
the original closed itemset does not exist, we create it with the
same support as the extended one. We say that the result is Ly ;.

P',. If we keep track of pseudo-intents, we eliminate iy from the
left-side or from the right-side of the global implication; whenever
a rule has an empty antecedent or consequent we discard it. We
say this new set is the base for global implications associated with
Lk-l-

We have mentioned in the first section the &model. This kind of
model is used for result displaying reasons only. Whenever we
extend a previously found model we display to the user only the
differences between the initial model and the final one, in order to
reduce the amount of presented results to the new ones. We have
not yet dealt with presenting to the user the closed itemsets that
become not closed during the extension.

The way we assume the data model processing will be useful is as
follows:

— first, the user can mine a few items, getting a fast response
and a small amount of results;

— if the user is satisfied by a certain data model he can store it
and extend it, afterwards, with some other items;

— if the user is not satisfied with the model, he can reduce it by
eliminating some items, until he can understand the results.

More, we can use the extension operation on an empty data
model, building data models from scratch.

3. THE NEW MINING PROCESS

According to the definition of a data model and of the operations
that can be performed on data models, a new mining process can

be designed. This new process consists of the following stages:

S - definition of mining process requirements

S, - data selection

S’3 - data cleaning and transformation

S, - pre-mining selection of data model, of operation to perform
(extending, reducing the model), of frequent items to operate
with;

S - performing selected operation;

S - presenting results;

S7 - interpreting results, if non-satisfactory results go to S's;

Sg - evaluating results; if important, save new data model.

A major advantage of our association rule mining process is the
increased number of human interventions during a complete
mining process.

The fact that a previously found model can be extended/reduced
with a set of frequent items ensures knowledge reuse.

Let's consider extending a data model. The problem complexity
depends on the difference in size between the final data model and
the original one. The complexity of reducing a data model
depends on the number of non-concepts that become concepts in
the final data model.

In a hypothetical case, when no non-concepts and no infrequent
itemsets appear, extending a concept lattice, consisting in C
concepts and R rules, with a new item will lead to 2C concepts
and 2R+C rules. The resulting concepts consist of the original
ones and new concepts, one for each of the old one. The resulting
rules comprise the old rules, the same number of rules between
the extended concepts, and one extra rule for each concept, as
shown in Figure 5 (C is a concept, and A; its adjacent
superconcepts, while i is the new item).

Following the same reasoning, when reducing a data model with
one item, in the hypothetical case, one should get C/2 concepts
and (R-C/2)/2 rules. In this case, there will only be a simple
filtering operation to perform. In the real case, some extra
processing is involved to recover the rules of previous non-
concepts, becoming concepts in the new mining context.

4. EXPERIMENTAL RESULTS

We have performed several experiments on different data
collections from the public domain. We have used a Pentium II
computer, 350 MHz, 128 MB RAM. The first experiment that is
revealing for this paper is about generating non-concepts. We
have used the http://lib.stat.cmu.edu/ datasets/boston_corrected
data, as it is more revealing for our experiment. We have run an

Minsup Al A2
Closed itemsets | Non-closed itemsets | Closed itemsets | Generating rules Pseudo-
intents
4% 49 1113 49 57 29
3% 73 1627 73 91 46
2% 102 5490 102 197 98
1.5% 144 11047 144 299 164
1% 202 18559 202 449 251

Table 1: Comparative amount of results between an Apriori-type algorithm and our approach

SIGKDD Explorations.

Volume 3, Issue 2 — page 34

exhaustive Apriori-type algorithm, we will call it Al, that finds all
frequent itemsets, closed itemsets as well as non-closed itemsets,
and the proposed algorithm, A2, for minsup= 1, 1.5, 2, 3, 4 %.
The results as shown in Table 1.

We have limited the experiment in what concerns the minimum
support, due to the long response time of Al. As we can see from
Table 1, our algorithm builds some non-closed itemsets, but
significantly less than an exhaustive algorithm. More, it does not
store all non-closed itemsets, but pseudo-intents. We have also
devised an exhaustive procedure for finding the pseudo-intents of
a lattice, in order to validate the results of the extension and
reduction algorithms.

Data Items | Concepts Pseudo- T Longest
Mode no. no. intents no. itemset
1 21 25 0 1 2
2 46 56 19 1 3
3 55 73 49 2 4
4 56 79 51 2 5
5 93 106 92 5 6
6 95 138 120 8 7
7 119 138 145 9 8
8 128 173 170 14 8
9 135 187 175 18 8

10 142 187 184 18 8
11 175 202 218 23 9
Data Altems | AConcepts APseudo- AT T: T,
models intents
1,2 25 21 19 0 1 0
2,3 9 17 30 1 2 2
3,4 1 6 2 0 1 1
4,5 37 27 41 3 3 2
5,6 2 32 28 3 5 2
6,7 24 0 25 1 5 3
7,8 9 35 25 5 6 3
8,9 7 14 4 1 1
9,10 7 0 0 2 1
10, 11 33 15 38 5 9 4

Table 2: Finding data models from scratch (upper table) and
from previously found data models (lower table)

In what concerns the time response of the algorithm when mining
from scratch or from previous results, we will show a relevant
one, run on the same data collection with minsup= 1%.

In Table 2 (upper table) we describe some characteristics of 11
larger and larger data models and the time required to build them
from scratch. The data model characteristics are: the number of
selected frequent items, the number of resulting concepts and
pseudo-intents, along with the length of the longest frequent
itemset. In Table 2 (lower table) we show the time needed to

SIGKDD Explorations.

extend, in T1, and reduce, in T!, one data model to the next. We
also show the number of items used for extension and reduction,
the number of concepts and pseudo-intents built or removed, and
we compute, in AT, the difference between the time corresponding
to building those models from scratch.

We can see that sometimes the computed time, AT, is bigger than
Tt time, and sometimes is smaller. We know that, theoretically,
adding an item depends on the initial number of closed itemsets.
The basic algorithm considers attributes in a specific order,
namely in the increasing order of their support (all our tests show
it is a convenient order, but we have no theoretical support for this
statement). Adding items, means considering them last. This is the
reason why Tt is not equal to AT. Anyway, even if different, Tt
is considerably smaller than mining from scratch. We can also see
from Table 2, that T! is significantly smaller than Tt. More, our
tests show that while Tt grows with the number of added items,
when extending the same data model, T! is smaller when
reducing the same data model with more items.

5. CONCLUDING REMARKS

In this paper, we have introduced the idea of data model,
expressed as frequent closed itemset lattice, with a base for global
implications, if needed. We have also described two important
operations applicable on data models: extension and reduction
with several items. The main advantages of our approach are:

- Constructing small models of data, makes them more
understandable for the user; also, the time of response is
small;

- Extending data models with a set of new items returns to the
user only the supplementary results, hence a smaller amount
of results; the response time is considerably smaller than
building the model from scratch;

- Whenever data models are incomprehensible, some of the
items can be removed, thus obtaining an easier to understand
data model,;

- Extending or reducing a model spares the time spent building
it, thus reusing knowledge;

- The mining process becomes more interactive and flexible,
due to the increased number of human interventions.

We are considering applying this approach to the more complex
mining process of finding quantitative association rules. For
example, for the quantitative attributes mapping problem, the
user-driven character of this approach offers the user means to
generate-and-test different mappings of the same quantitative
attribute in the context of a certain, pre-acquired, data model.

6. REFERENCES

[1] Agrawal, R., Imielinski, T., Swami, A.: Mining association
rules between sets of items in large databases. In Proc. of the
ACM SIGMOD Conference on Management of Data, pages
207-216, Washington D.C., May (1993).

[2] Agrawal, R., Srikant, R.: Fast algorithms for mining
association rules. In Proc. of the VLDB Conference,
Santiago, Chile (1994).

[3] Fayyad U., Data Mining Knowledge Discovery: Making
Sense Out of Data IEEE Expert Special issue on Data
Mining, 1996.

Volume 3, Issue 2 — page 35

[4]

(9]

(6]

Ganter B.: Algoritmen zur formalen begriffsanalyse, Beitrage
zur Beigriffanalyse (Ganter, Wille, Wolf, eds), Wissenschaft-
Verlag (1987).

Godin, R., Missaoui, R., Alaoui, H.: Incremental concept
formation algorithms based on Galois (concept) lattices.
Computational Intelligence, 11(2):246--267 (1995).

Gupta, S. K., Bhatnagar, V., Wasan, S. K., Somayajulu, D.,
Intension Mining: A New Paradigm in Knowledge
Discovery. Technical Report No. HTD/CSE/TR2000/001,
Indian Institute of Technology, Delhi, INDIA, (2000)

Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering
frequent closed itemsets for association rules. In 7th Intl.
Conf. On Database Theory (1999).

SIGKDD Explorations.

(8]

(9]

Pei, J., Han, J., Mao, R.: CLOSET: An efficient algorithm for
mining frequent closed itemsets. In Proc. of DMKD 2000,
pp. 11--20 (2000).

Wille, R.: Restructuring lattice theory: an approach based on
hierarchies of concepts, Ordered Sets, pp. 445-470, (1982).

[10] Zaki, M.J., Hsiao, C.J.. CHARM: An Efficient Algorithm for

[11] Zaki, M.J.,

Closed Association Rule Mining, RPI Technical Report 99-
10 (1999).

Ogihara, M.: Theoretical Foundations of
Association Rules, in Proc. of the 3" SIGMOD’98 Workshop
on Research Issues in Data Mining and Knowledge
Discovery (DMKD), Seattle, WA, pp 7:1-7:8 (1998).

Volume 3, Issue 2 — page 36

