Mining Data Streams under Block Evolution

Venkatesh Ganti
Microsoft Research

vganti@microsoft.com

ABSTRACT

In this paper we survey recent work on incremental data
mining model maintenance and change detection under block
evolution. In block evolution, a dataset is updated period-
ically through insertions and deletions of blocks of records
at a time. We describe two techniques: (1) We describe
a generic algorithm for model maintenance that takes any
traditional incremental data mining model maintenance al-
gorithm and transforms it into an algorithm that allows re-
strictions on a temporal subset of the database. (2) We
also describe a generic framework for change detection, that
quantifies the difference between two datasets in terms of
the data mining models they induce.

1. INTRODUCTION

In this paper we survey two data mining techniques for a spe-
cial computational model of streaming data, where a dataset
is updated periodically through insertions and deletions of
sets of tuples at a time; we call this model of changing data
block evolution. In block evolution, the input dataset to the
data mining process is not static, but is updated with a new
batch of tuples at regular time intervals, for example, every
day at midnight. A block is a set of tuples that are added si-
multaneously to the database. This model captures common
practice in many of today’s data warehouse installations,
where updates from operational databases are batched to-
gether and performed in a block update [21]. For example,
AT&T updates their call data warehouse once a day with
new call data records, and several large retail chains update
their data warehouses daily.

Consider two data mining applications that are typical in
scenarios of block evolution. Suppose an analyst is model-
ing the AT&T database for detecting fraudulent call pat-
terns. Processes causing fraud change dynamically because
people continuously find newer ways of breaking the sys-
tem. Therefore, the analyst may only be interested in mod-
eling the most recently collected set of call data records, say,
those collected in the past three months. In this case the
analyst restricts the scope of the data over which the data
mining model should be constructed. As another example,
the analyst may be interested in analyzing the impact of a
marketing campaign targeted at increasing the sales of long
distance service. The goal here is to study the increase in
the targeted service and the impact (decrease or increase) on
other related services. Therefore, the analyst wants to “com-

SIGKDD Explorations.

Johannes Gehrke
Cornell University

johannes@cs.cornell.edu

Raghu Ramakrishnan
UW-Madison

raghu@cs.wisc.edu

pare” the customer behavior in call data records collected
before the campaign with the behavior in data collected af-
ter the campaign. Going one step further, the analyst wants
to know the features in customer data that account for the
“largest difference” between the data collected before and
after the campaign.

1.1 Data Mining Under Block Evolution

Let us introduce our model of mining data in the block evo-
lution model. In our model, the database consists of a (con-
ceptually infinite) sequence of data blocks D1, Do, ... that
arrive at times 1,2, ..., where each block D; consists of a set
of records.! We call i the block identifier of block B;. Thus
at any time ¢, the database consists of a finite sequence
of blocks of data (Di,...,D;) that have arrived at times
{1,2,...,t}. One obvious choice for data mining model con-
struction at time ¢ is to construct a series of models over
D[1,1] = D1,D[1,2] = Dy U Ds,...,D[1,t] = UiD; such
that at time ¢ we obtain the data mining model M (D[1, w])
constructed over D[1,¢]. In our model of block evolution, a
data analyst can specify time-dependent subsets of D[1,¢]
by defining a data span and a block selection sequence.
Data Span: In the block evolution model, some applica-
tions require mining all data accumulated thus far, whereas
other applications are interested in mining only the most
recently collected portion of the data.

As an example, consider an application that extracts from a
large database of documents a set of document clusters, each
consisting of a set of documents related to a common con-
cept [61]. Occasionally, a new block of documents is added
to the database, necessitating an update of the document
clusters. Typical applications in this domain are interested
in clustering the entire collection of documents.

In a different application consider the database of a hypo-
thetical toy store which is updated daily. Suppose the set
of frequent itemsets discovered from the database is used by
an analyst to devise marketing strategies for new toys. The
model obtained from all the data may not interest the an-
alyst for the following reasons. (1) Popularity of most toys
is short-lived. Part of the data is “too old” to represent the
current customer patterns, and hence the information ob-
tained from this part is stale and does not buy any compet-
itive edge. (2) Mining for patterns over the entire database
may dilute some patterns that may be visible if only the
most recent window of data, say, the latest 28 days, is ana-
lyzed. The marketing analyst may be interested in precisely

!General updates typically involve arbitrary insertions and
deletions of records.

Volume 3, Issue 2 - page 1

these patterns to capitalize on the latest customer trends.
To capture these two different requirements, we allow two
different data spans at time t: In the unrestricted window
(UW) case, the relevant data consists of D[1,¢], all the data
collected so far. In the restricted window case, a speci-
fied number w of the most recently collected blocks of data
D[t —w+1,t] = Di—w4+1U---U Dy are selected as input to
the data mining activity (we assume without loss of gener-
ality ¢ > w through the paper). We call the parameter w
the window size.

Block Selection Sequence: We now introduce an addi-
tional selection constraint called the block selection sequence
(BSS) that can be applied in conjunction with the options
on the data span dimension to achieve a fine-grained block
selection. The next definition formalizes the notion that
a block selection sequence marks relevant blocks in the se-
quence of database blocks.

Definition 1. A block selection sequence is an infinite se-
quence B = (b1,...,bs,...) of bits b; € {0,1}.

We also define two operations on block selection sequences.
The first operation is the projection operator m which takes
as input a block selection sequence B = (bi,bs,...) and
an interval [t1,¢2] and sets all the bits in B in the interval
to 0, formally m(B,[t1,t2]) = (b],b5,...), where b; = 0 if
i ¢ [ti,t2] and b, = b;, otherwise. We also introduce a
translation operator = which takes as input a block selection
sequence B = (b1,b2,...) and an offset ¢ and “shifts” B
to the right for ¢ bits, inserting leading 0 bits. Formally
(B, [t]) = (b1,b5,...), where bj = bi—¢ if i > t and b; = 0,
otherwise.

The following hypothetical applications (of interest to a mar-
keting analyst) of a toy store database motivate different
types of block selection sequences.

1. The analyst wants to model data collected on all Mon-
days to analyze sales immediately after the weekend.
The required blocks are selected from the unrestricted
window by a block selection sequence that marks all
blocks added to the database on Mondays.

2. The analyst is interested in modeling data collected on
all Mondays in the past 28 days (corresponding to the
last 4 weeks). In this case, a block selection sequence
that marks all blocks collected on Mondays in the most
recent window of size 28 selects the required blocks.

3. The analyst wants to model data collected on the same
day of the week as today within the past 28 days. The
required blocks are selected from the most recent win-
dow of size 28 by a sequence that, starting from the
beginning of the window, marks all blocks added every
seventh day.

Note that the second application the block selection se-
quence is independent of the starting position of the win-
dow, whereas in the third application it is defined relative
to the beginning of the window and thus moves with the
window.

1.2 Resulting Problems

Given our model of block evolution with user-specified data
span and block selection sequence, we can define two rele-
vant problems: data mining model maintenance and change
detection.

SIGKDD Explorations.

Change detection. The goal of deviation detection is to
quantify the difference, in terms of their data characteristics,
between two blocks of data D: and D». Note that one of
the difficulties of this informal problem statement is the def-
inition of change: What is a quantitative measure of change
between two datasets? We postpone further discussion of
change to Section 4, and we continue in this Section by giv-
ing a formal defitinion of data mining model maintenance
under block evolution.

Data mining model maintenance. The goal of model
maintenance is to maintain a data mining model under in-
sertion and deletions of blocks of data according to a spec-
ified data span and block selection sequence. Let M be a
specific class of data mining models (for example, a decision
tree); we denote by M (D) the data mining model of class
M induced from dataset D. Let us also define the selection
of a dataset D given a selection bit b: We define D® = ()
if b =0, and D* = D if b = 1. Similarly, we define the
selection of a dataset D[t1,t2] = D¢y UDy 41U, ..U Dy, for
1 < t1 < t2 as the union of a set of selections on data blocks
as follows: We define D[t1,2]" = Dbil U D?;fll u...u ng
where B = (b1,ba,...) for 1 <t; < t2. Informally, D[tl,tz]B
consists of the blocks in Dlt1, t2] selected by B.

Let us now define the problem of data mining model main-
tenance under block evolution.

Definition 2. Let D1, D,,... be a sequence of datasets,
let B = (b1,b2,...) be a block selection sequence, and let
M be a class of data mining models. We can define three
variants of mining data under block evolution.

o Unrestricted window, window-independent block selec-
tion sequence. Given an unrestricted window span,
compute the following series of models:

M(D[1,1]%), M(D[1,2]°),..., M(D[1,1]"),

M(D[1,t + 1]7),...

In this case, the block selection sequence selects indi-
vidual blocks for inclusion or exclusion from the model
being incrementally constructed. At every step, one

more bit of the block selection sequence becomes rele-
vant.

o Restricted window, window-independent block selection
sequence. Given an restricted window span of size w,
compute the following series of models:

M(DI[1,1]%), M(D[1,2]%), ..., M(D[1,1]),
M(D[2,w + 1]7),..., M(D[t —w + 1,%]7), ...
At every step, one “new” bit of the block selection

sequence becomes relevant and one “old” bit of the
sequence expires.

e Restricted window, window-dependent block selection
sequence. Given a restricted window span of size w,
compute the following series of models:

M(D[1,1)%), M(D[1,2]%) ..., M(D[1, "),

M(D[2,w +1]"5D), M(D[3,w +2]"E), ...,

M (D[t —w 41,47 B=wF0y

In this case, the block selection sequence moves with

the window, and at all times only the first w bits of
the shifted block selection sequence matter.

Volume 3, Issue 2 - page 2

Window-independent BSS -~ ’T’o:ﬁ‘ ,,,,,,,, =

D4 D, Dg Dy
,,,,,,,,, I
. 1 0 1
Window-dependent BSS 1 0 1
- Y -
1 0 1

Figure 1: Most Recent Window

a b
[0.5] [0.4]
ab
[0.25]
L1: [D1]

Figure 4: lits-model

Note that the case of unrestricted window, window-inde-
pendent block selection sequence, with a block selection se-
quence B = (1,1,...) results in the traditional case of incre-
mental model maintenance, and many algorithms have been
developed for this case (see the discussion in Section 5). The
work on model maintenance that we describe in this article
leverages existing algorithms on incremental model main-
tenance to develop a generic model maintenance algorithm
for the unrestricted and restricted window case with a user-
defined window-independent or window-dependent block se-
lection sequence. The algorithm that we describe in Section
3 requires an incremental model maintenance algorithm as
input, which is then used as a building block for a generic
algorithm for the model maintenance problems described
above.

Outline of the article. The remainder of the article is
organized as follows. In Section 2, we briefly discuss two
classes of data mining models. In Section 3, we describe
GEMM, a generic algorithm for model maintenance. In Sec-
tion 4, we discuss the FOCUS framework for quantitatively
measuring changes in data characteristics. We briefly dis-
cuss related work in Section 5 and conclude in Section 6.

2. PRELIMINARIES

In this section, we informally introduce two classes of data
mining models that we will use to illustrate our techniques
in the remainder of the paper: lits-models (short form for fre-
quent itemset models [5]) and dt-models (short form for de-
cision tree models [17]). Our discussion here is intentionally
brief as we assume that the reader has familiarity with these
models (pointers to detailed introductions can be found in
Section 5).

dt-models: Consider a set of records with several attributes.
One designated attribute is called the class label, the other
attributes are called predictor attributes. The dependent
attribute is a categorical attribute while the predictor at-
tributes can either be categorical or numerical. The goal of
predictive modeling is to build a model that takes as input
the values of the predictor attributes and predicts a value

SIGKDD Explorations.

for the dependent attribute.

A dt-model is a graphical prediction model in the form of a
tree. The root of the tree does not have any incoming edges.
Every other node has exactly one incoming edge and zero
or two or more outgoing edges. If a node n does not have
any outgoing edges, we call n a leaf node, otherwise we call
n an internal node. Each edge originating from an internal
node is labeled with a splitting predicate. The set of splitting
predicates P on the outgoing edges of an internal node must
be non-overlapping and ezhaustive. A set of predicates P is
non-overlapping if the conjunction of any two predicates in
P evaluates to false. A set of predicates P is ezhaustive if the
disjunction of all predicates in P evaluates to true. Each leaf
node is labelled with a class label. An example of a decision
tree is shown in Figure 2.

lits-models: The analysis of market basket data typically re-
lies on lits-models. A market basket is a collection of items
purchased by a customer in an individual transaction, where
a transaction contains items related to a well-defined busi-
ness activity, the canonical example being a customer’s visit
to a grocery store Formally, let Z = {i1,...,4,} be a set of
literals called items. A transaction and an itemset are sub-
sets of Z. A transaction T is said to contain an itemset X if
X CT. Let D be a set of transactions. The support op(X)
of an itemset X in D is the fraction of the total number of
transactions in D that contain X. An itemset whose support
is greater than a user-specified minimum support threshold
is said to be frequent. An example of a lits-models is shown
in Figure 4.

3. GENERIC DEMON ALGORITHM

We now describe GEMM, a generic model maintenance al-
gorithm. We only consider the restricted window option; we
refer to the full paper for the unrestricted window version
[36].

Given a class of models M and an incremental model main-
tenance algorithm Aa for the unrestricted window option,
GEMM can be instantiated with Aaq to obtain a model
maintenance algorithm (with respect to both window-inde-
pendent (Section 3.1) and window-dependent (Section 3.2)
block selection sequences B) for the most recent window op-
tion.

3.1 Window-independent BSS

Let us explain the central idea of GEMM for a window-
independent BSS B. Note that we easily incrementally con-
struct the model M(D[t —w + 1,t])® by starting with an

—w+1

empty model at time ¢ —w+1 and adding block th—w+1 us-
ing the existing Algorithm Ax¢. We continue to add blocks
Dfi‘w”_:rf, ..., DY until we have constructed at time ¢ the
model M (D[t —w + 1,t])®. Our only requirement was suf-
ficient memory to maintain M (D[t —w + 1,4])® at times
i€t —w+1,t.

This observation leads to a simple but very general algorith-
mic idea for incremental block maintenance: We maintain
at any time ¢ all necessary partially constructed models for
all future windows that overlap with the current time ¢.
Let us give an inductive description of the GEMM algo-

rithm. Assume at step ¢ we constructed model M (D[t — w + 1,]°).

There are w — 1 future windows that overlap with time #:
[t—w+2,t+1],...,[t,t + w — 1]. Inductively, we assume
that in addition to M (D[t — w + 1,]°) we also maintained

Volume 3, Issue 2 - page 3

Age<=30

0.005

oss| ©

\

0.1
0.0 @

Salary <= lOOK/
0.0

0:3 @

Figure 2: dt-model

models M(D[t' — w + 1,t]°) for ' € {t+1,t+w—2}. Then
when the block ¢ + 1 arrives, we use Arq to update models
M(D[t' —w+1,]%) to M(D[t' —w + 1,t + 1]°) using A
and foll for t' € {t+1,t+ w — 2}. We then add model
M(DI[t +1,t + 1)), completing the induction step.

As an example, consider the current database snapshot D[1, 3]
with w = 3 in Figure 1. The window-dependent BSS is
101 (shown above the sequence of database blocks), and the
window-independent BSS is 10110 ... (shown above the se-
quence of database blocks). The future windows that over-
lap with [1, 3] are [2,4] and [3,5]. At time ¢ = 3, the auxil-
iary models that are maintained in addition to the current
model M(D[1,3]%) are M(D[2,3])® and M (D[3,3]") —the
prefixes of [2, 4] and [3, 5] that overlap [1, 3].

‘When the new block D4 is added, the collection of auxiliary
models is updated as follows:
M(D|2,4],{1011...)) = Am(D4, M(DJ[1, 3],(101...))),
M(D[3,4],(1011...)) = Ap(Da, M(D[3,3],{101...))),
M(D[4,4],{1011...)) = Am(Da,0)

3.2 Window-dependent BSS

Consider the database snapshot D[1, 3] shown in Figure 1
with the window-dependent B = (101...), w = 3, at time
t = 3. The current model on DJ[1,3] is extracted from the
blocks D, and D3. When D, is added, the window shifts
to the right and the new model over the interval [2,4] is
constructed from blocks Ds and D4. Observe that the new
model can be obtained by updating (using A¢) the model
extracted from the block Ds, if we would have maintained
M (D) at times ¢ = 2 and ¢t = 3. Note that the relevant
set of blocks (for extracting the model from the overlap be-
tween D[1, 3] and D[2, 4]) is selected from D1, 3] by the BSS
{0101 ...)—the translation of the original BSS (101) with an
offset of 1. This example shows us that we can use the same
idea as in Section 3.1: We maintain an auxiliary collection
of partial models for all future windows that overlap with
the current time ¢. Thus the procedure for maintaining and
updating a collection of models for a window-dependent BSS
is analogous to the procedure for window-independent BSS.
Let us again give an inductive description of the GEMM
algorithm for a window-dependent BSS B = (b1, b2,...). As-

sume we are at step ¢ with model M (D[t — w + 1, ¢]7F-{=w+1)),

There are w — 1 future windows that overlap with time
t: [t—w+2,t+1],...,[t,t + w— 1]. Inductively, we as-
sume that in addition to M(D[t — w + 1,8]" %'~ we

SIGKDD Explorations.

100K |- §
<0.005,0.55>

Salary

30 Age

Figure 3: DT:two-components

also maintained models M (D[t' —w + 1,t]T(B’th+1)) for
t' € {t+1,t+w—2}. Then when the block ¢+ 1 arrives, we
use A to update models M (D[t — w + 1,4 ®" 7) o

MD[t' —w+1,t+ 1]T(B’tl_w+1)) using Aa and foll for

t' € {t+1, t+w—2}. We then add model M (D[t + 1,¢ + 1]7 B+,

completing the induction step.

For the example in Figure 1, the collection of auxiliary mod-
els maintained at time ¢ = 3 is

M(D[L, 3](101...))’ M(D[1, 3](0101“'>),M(D[1,3]<00101'“)).
When the new block D4 is added, the collection of models
is updated to:

M(DJ[2,4],(01011...)) = Am (D4, M(D[1,3],(0101...))),
M(D[3,4],{0010...)) = Am (D4, M(D][3, 3],(00101...))),

M (D[4, 4],{0000101 . ..)) = Axm (D4, D)

3.3 Time and Space Requirements

In this section, we denote the model on the window DJ[1, w]
with respect to a (window-independent or window-dependent)
BSS B by M(D[1,w], B). We define the response tirme to be
the time elapsed between the addition of a new block D41
and the availability of the updated model M (D[2, w + 1], B).
‘We observe that for either type of BSS, the computation of
the new model M(D[2,w + 1], B) involves at most a sin-
gle invocation of Ax¢ with the two arguments: D41 and
M(D[2,w],B") (where B’ is a potential translation of B as
shown in Section 3.2). Therefore, the response time is less
than or equal to the time taken by A to update the model
M(D[2, w], B’) Wlth Dw+1.

Except for the model M(DJ[2,t¢ + 1],b), the auxiliary mod-
els for future windows are not required immediately at time
t + 1. Therefore, these updates are not time-critical and
can be performed off-line when the system is idle. However,
some of these models need to be updated before the subse-
quent block arrives. An important implication of the lack
of immediacy of these updates is that the collection of aux-
iliary models (except M(D[2,t],B') can be stored on disk
and retrieved when necessary. Thus main memory is not a
limitation as long as a single model fits in-memory. Like all
current data mining algorithms, we assume that at least one
model fits into main memory, and we maintain w — 1 addi-
tional models on disk. Since the space occupied by a data
mining model is likely to be insignificant when compared
to the space requirements of each block, the additional disk
space required for these models is negligible.

Volume 3, Issue 2 - page 4

3.3.1 Optionsand Optimizations

Certain classes of models are also maintainable under dele-
tion of records. For example, frequent itemsets can be main-
tained under deletions of transactions [24; 25; 26]. In this
case, the algorithm proceeds exactly as for the addition of
transactions except that the support of all itemsets con-
tained in a deleted transaction is decremented. Maintain-
ability under deletions gives two choices for model mainte-
nance under the most recent window option: (1) GEMM in-
stantiated with the model maintenance algorithm Axq for
the addition of new blocks, and (2) A%, that directly up-
dates the model to reflect the addition of the new block
and the deletion of the oldest block in the current window.
We first discuss the space-time trade-offs between the two
choices for the special case when the BSS has the special
form B = (111...1), and then for an arbitrary BSS.

Let the BSS be B = (111...). The first option (usage
of GEMM) requires disk space to maintain w — 1 models
with response time being the invokation of Ax¢ to add the
new block. In the second option (usage of A%,), we only
maintain one model. However, A%, has to add a new block
to the window and delete the oldest block in the window,
and hence this option approximately takes twice as long as
GEMM (assuming that deletion of a record takes as much

time as addition and the blocks being deleted and added]1Q0K

are of the same size). Also note that usage of A%}, requires

storage of the last w data blocks, since we need D;_ w41 t0 5,
delete it from the current window. Therefore, GEMM has @

better response time characteristics with smaller space re-
quirements.

The full generality of GEMM comes to the fore for classes
of models that cannot be maintained under deletions of
records, and in cases where model maintenance under dele-
tion of records is more expensive than that under insertion.
For instance, the cost incurred by incremental DBScan to
maintain a set of clusters when a record is deleted is higher
than that when a record is inserted [31].

When we consider a window-relative BSS, a major drawback
of using A%, for model maintenance is that A%, may require
deletion and addition of many blocks to update the model.
Recall that a (window-dependent) BSS chooses a subset B
of the set of blocks {Di,...,Dy} in the window. When
the window shifts right, depending on the BSS, a number
(> 1) of blocks may be newly added to B and more than
one block may be deleted from B. Therefore, A%, scans
all blocks in the newly added set as well as the deleted set.
For certain block selection sequences, it may reduce to the
naive reconstruction of the model from scratch, for example
for the BSS B = (10101010...). At any time ¢, the model
constructed at time ¢ — 1 contains exactly the “wrong” set
of blocks.

4. CHANGE DETECTION: FOCUS

‘We now discuss the FOCUS framework for change detection.
In general, a data mining model constructed from a dataset
is designed to capture the interesting characteristics in the
data. Therefore, FOCUS uses the difference between data
mining models as the measure of change, called deviation,
between the underlying datasets. In this section, we illus-
trate the concepts and ideas behind the framework’s com-
putation of deviation between two datasets first through the
class of decision tree models and then through the class of

SIGKDD Explorations.

frequent itemsets. The details can be found in [37].

4.1 dt-models

Let the decision tree constructed from a hypothetical dataset
D with two classes—C and C>—be as shown in Figure 2.
The decision tree comnsists of three leaf nodes. The class
distribution at each leaf node is shown beside it (on the left
side) with the top (bottom) number denoting the fraction of
database records that belong to class C1 (C2, respectively).
For instance, the fractions of database records that belong
to the classes C1 and C in the leaf node (1) are 0.0 and 0.3,
respectively. Each leaf node in the decision tree corresponds
to two regions (one region for class Ci1 and one region for
class C3), and each region is associated with the fraction
of records in the dataset that map into it; this fraction is
called the measure of the region. Generalizing from this
example, each leaf node of a decision tree for k classes is
associated with k regions in the attribute space each of which
is associated with its measure. These k regions differ only in
the class label attribute. In fact, the set of regions associated
with all the leaf nodes partitions the attribute space.

<0.1,0.0> :
,,,,,,,,,,,,,, <0.180.1>
: <0.005,0.55> 80K *'”*"'*”'*'”*'”*'”% <0.1,0.52>
<0.0,0.3> : > |
: <0.00.1>
0 Age .
g Age 50
L
[0.110.14]
K m @) (Counts for only C1
2 8K ——— [0.005\01] a€shown)
[0.010.0]
30 50~ [00\00]
Age

T3: GCRof Tland T2
Figure 5: dt-model:T3 = A(T1,T2)

The set of regions associated with all the leaf nodes in the
dt-model is called the structural component of the model, and
the set of measures associated with each region in the struc-
tural component the measure component of the model. The
property that a model consists of structural and measure
components is called the two-component property. Figure 3
shows the set of regions in the structural component of the
decision tree in Figure 2 where the two regions corresponding
to a leaf node are collapsed together for clarity in presen-
tation. The two measures of a leaf node are shown as an
ordered pair, e.g., the ordered pair (0.0, 0.3) consists of the

Volume 3, Issue 2 - page 5

measures for the two collapsed regions of the leaf node (1)
in Figure 2.

We now illustrate the idea behind the computation of de-
viation between two datasets over a set of regions. Let D;
and D> be two datasets. Given a region and the measures
of that region from the two datasets, the deviation between
D; and D- with respect to the region is a function (e.g., ab-
solute difference) of the two measures; call this function the
difference function. A generalization to the deviation over
a set of regions is a “combination” of all their deviations at
each region; represent this combination of deviations by a
function called the aggregate function, e.g., sum.

If two datasets D1 and D induce decision tree models with
identical structural components, we can combine the two
ideas—the two-component property and the deviation with
respect to a set of regions—to compute their deviation as
follows: the deviation between D; and Ds is the deviation
between them with respect to the set of regions in their
(identical) structural components.

However, the decision tree models induced by two distinct
datasets typically have different structural components, and
hence the simple strategy described above for computing
deviations may not apply. Therefore, we first make their
structural components identical by “extending” them. The
extension operation relies on the structural relationships be-
tween models, and involves refining the two structural com-
ponents by splitting regions until the two sets become identi-
cal. Intuitively, the refined set of regions is the finer partition
obtained by overlaying the two partitions of the attribute
space induced by the structural components of both decision
trees. We call the refined set of regions the greatest cornmon
refinement (GCR) of the two structural components. For
instance, in Figure 5, T5 is the GCR of the two trees T} (in-
duced by D) and T> (induced by D). In each region of the
GCR T3, we show a hypothetical set of measures (only for
class C1) from the datasets D, and D,. For instance, the
measures for the region salary > 100K and age < 30 for
the class C: from D; and D> are 0.0 and 0.04, respectively.
The property that the GCR of two models always exists is
called the meet-semilattice property of the class of models.

To summarize, the deviation between two datasets D; and
D> is computed as follows. The structural components of
the two dt-models are extended to their GCR. Then, the de-
viation between D; and D» is the deviation between them
over the set of all regions in the GCR. In Figure 5, if the dif-
ference function is the absolute difference and the aggregate
function is the sum then the deviation between D; and D
over the set of all C regions is given by the sum of devia-
tions at each region in T3: [0.0 — 0.0] 4+ |0.0 — 0.04] 4+]0.1 —
0.14| +10.0 — 0.0 + 0.0 — 0.0] +]0.05 — 0.1| = 0.13.

4.2 lits-models

Paralleling the example computation using the class of de-
cision tree models, we now illustrate the deviation compu-
tation through the class of frequent itemset models.

Figure 4 shows a simple itemset model where Z = {a,b}.
It has three interesting regions identified by the frequent
itemsets {a}, {b}, and {a,b}. Each itemset (equivalently,
the corresponding region) is associated with its support: {a}
with 0.5, {b} with 0.4, and {a, b} with 0.25. The measure of a
region identified by an itemset is the support of the itemset.
Generalizing from this example, each frequent itemset X in
a lits-model represents a region in the attribute space (where

SIGKDD Explorations.

a b b c
(05] [04] (03] [0.5]
o be

(0.25] 7 [0.2]
LL:[D1] \ / L2[D2]
a b c
[05,0.1] [0.4,03] [0.1,05]
ab hc
[0.25,0.05] [0.050.2]

L3: GCRof L1and L2

Figure 6: lits-model: L3 = A(L1, L2)

the support is higher than the threshold) whose measure is
the support of X. The set of all frequent itemsets is the
structural component and the set of their supports is the
measure component.

As in the case of decision trees, if the structural compo-
nents of two models are identical we compute the devia-
tion between them to be the aggregate of the deviations
between the measures at all regions in either structural com-
ponent. However, if the structural components are different,
we first make them identical by extending both models to
their greatest common refinement. For the lits-models, the
GCR is the union of the sets of frequent itemsets of both
models. For example, Figure 6 shows the GCR of two lits-
models L; induced by D; and L. induced by D>. The mea-
sures (or supports) obtained by scanning D; and D, for
each itemset in the GCR are shown below it. The devi-
ation between the datasets is the deviation between them
over the set of all regions in the GCR. If the difference
function is the absolute difference, and the aggregate func-
tion is the sum then the deviation between D; and Ds is
[0.5—0.1]4+]0.4—0.3]41]0.1—0.5|+]0.25—0.05|+]0.05—0.2| =
1.125.

Deviation between two datasets

The FOCUS framework essentially generalizes the above
two examples showing that popular classes of data mining
models (dt-models, lits-models, and cluster-models) always
consist of two components: the structural component iden-
tifying a set of interesting regions of the attribute space,
and the measure component summarizing, with respect to a
dataset, each region with one or several measures. Given the
structural components of two different data mining models
M(D,) and M (D), it is always possible to find a unifying
structural component, called the greatest common refine-
ment (GCR), and to determine the measure components
corresponding to the GCR with respect to D; and D». Let
f be a difference function quantifying the deviation between
the measures with respect to D; and D- at a specific region
in the GCR, and g be an aggregate function over a combin-
ing a set of deviations. The deviation between D, and D»
through the data mining models M (D;) and M (D-) they
induce is the aggregate, computed using g, of the set of de-
viations computed using f between measures with respect

Volume 3, Issue 2 - page 6

to D1 and D3 of each region in the GCR.
4.3 Additional Comments

Focused Deviations: In the above examples, we computed
the deviation between two datasets over the entire attribute
space. In cases where an analyst is interactively exploring
two datasets to find regions where they differ considerably,
it is necessary to “focus” the deviation computation with
respect to a specific region R. The FOCUS framework covers
such requirements. The computation is focused with respect
to region R by first intersecting each region in the GCR with
R and then combining (using the aggregate function) the
deviations over these intersected regions. The intersection
with R ensures that the deviation is computed only over
regions contained in R. In Figure 5, suppose the analyst
is interested only in the difference between 77 and 1% over
the region R: age < 30. The regions in the GCR T3 inter-
sected with R are the three leftmost regions that satisfy the
condition age < 30. The deviation between 71 and 7> with
respect to Ris: |0.0—0.0/4]0.0 —0.04]| +|0.1—0.14| = 0.08.
A complementary approach is to declaratively specify a set
of “interesting” regions in terms of the structural compo-
nents of the two models and then rank the interesting regions
in the order of their deviations. Towards this goal, FOCUS
introduces a set of structural operators and a ranking oper-
ator for declarative specification of interesting regions and
region-ranking, respectively. Details can be found in the
paper [37].

Statistical Significance of Deviation: Suppose the de-
viation between D; and Ds is 0.005, and that between D;
and D3 is 0.01. From just the deviation values, we are able
to say the data characteristics of D; and Dy are more sim-
ilar than those of D; and Ds. But, we still do not know
whether they have “different” data characteristics; a devi-
ation of 0.01 may not be uncommon between two datasets
generated by the same process. In other words, is the de-
viation value statistically “significant”? FOCUS uses boot-
strapping techniques for computing the distribution of devi-
ation values when data characteristics remain the same, and
then uses this distribution to answer whether the observed
deviation value indicates a significant deviation.

From the FOCUS framework, the misclassification error met-
ric (from Machine Learning and Statistics) and the chi-
squared goodness of fit statistic (from Statistics) can be in-
stantiated. Both metrics have traditionally been considered
only in the context of dt-models. Thus, the FOCUS frame-
work which covers other classes of models as well is more
general than current approaches in Machine Learning and
Statistics.

5. RELATED WORK

We first discuss incremental mining algorithms for frequent
itemsets, clustering, and classification. We then review work
related to the change detection problem spanning Statistics
and data mining.

5.1 Model Maintenance

The FUP algorithm and its derivatives are the first to ad-

dress the problem of incrementally maintaining frequent item-
sets [24; 25; 26]. It makes several iterations and in each

iteration, it scans the entire database (including the new

block and the old dataset). The BORDERS algorithm im-

proves the FUP algorithm by reducing the number of scans

SIGKDD Explorations.

of the old database. Ester et al. [31] extended DBScan [32]
to develop a scalable incremental clustering algorithm. In
prior work, we developed a scalable incremental algorithm
for maintaining decision tree classifiers [38]. Utgoff et al. [59]
developed ID5, an incremental version of ID3, which as-
sumes that the entire dataset fits in main memory and hence
is not scalable.

5.2 Data Streams

Data structures that hold summary information over data
streams are examples of synopsis data structures [16; 40; 4;
3; 10; 2]. Construction of summary data structures over
data streams has been of much interest recently [47]. Algo-
rithms and systems have been proposed for the computation
of approximate frequency moments [9], L' and L? distance
functions [33; 35], property testing [34], and signatures [27].
There has also been recent work on mining data streams,
such as the construction of decision trees over data streams
[38; 30; 48] and clustering data streams [62; 43; 54]. Recent
work by Agrawal et al. [7], Gibbons et al. [39], Alsabti et
al. [11] , Manku et al. [52; 53], and Greenwald and Khanna
[42] consider how to compute the approximate median and
other quantiles in a single pass over a finite data set. Cor-
related aggregates are considered in by Chatziantoniou and
Ross [20], Chatziantoniou [19], Akinde et al [8], and Gehrke
et al. [23] with the focus on exact and approximate computa-
tion of correlated aggregates over finite data sets in multiple
passes.

The maintenance of aggregate queries is a special case of the
the problem of incremental view maintenance; in particular,
the maintenance of basic statistical aggregates in the pres-
ence of database updates was considered in [55]. The synop-
sis data structures of Matias et al [41] consider the approxi-
mate maintenance of more fancy aggregates in the presence
of updates. In online aggregation, Hellerstein et al. study
the convergence of basic aggregates over finite data sets [46]
and they describe access methods that retrieve records in
random order in order to use statistical estimators based on
independence assumptions. This work has been extended to
online computation of joins [45], online reordering [56] and
to adaptive query processing [15].

Related is also work on the processing on continuous queries
[58], such as in the OpenCQ System [51], the NiagaraCQ
Project [22], and the XFilter System [12]. Data streams also
have an interesting relationship to the problem of concept
drift in the machine learning community [49; 50; 60].

5.3 Change Detection

The general approach in Statistics for detecting significant
differences relies on the goodness of fit tests (e.g., [28]) which
try to measure how well a dataset fits a model or a hypoth-
esis. The chi-squared test is a commonly used goodness of
fit test. Similar approaches are employed in the context
of time series analysis (e.g., [13]). The FOCUS framework
generalizes these approaches in two ways. First, we consider
popular classes of data mining models instead of traditional
statistical models. Second, our bootstrapping-based proce-
dure for computing the significance of deviation is a gener-
alization of traditional methods which assume that the test
statistic follows a known distribution (say, chi-squared or
normal).

Interestingness measures to monitor variation in a single
pattern were proposed in [57]. A similar problem of mon-

Volume 3, Issue 2 - page 7

itoring the support of an individual itemset was addressed
in [6; 18]. Given a pattern (or itemset) their algorithms
propose to track its variation over a temporally ordered set
of transactions. However, they do not detect variations at
levels higher than that of a single pattern.

6. CONCLUSIONS

We explored the problem space of systematic data evolution,
typical of most data warehouses, for two important data
mining goals: model maintenance and change detection. We
then reviewed algorithms for both objectives.
Acknowledgements. We acknowledge gifts from Microsoft
and Intel; support from the NSF under grants 1IS-0121175
and IIS-0084762; and an IBM Faculty Development Award.
Any opinions, findings, conclusions or recommendations ex-
pressed in this material are those of the author(s) and do
not necessarily reflect the views of the NSF or Microsoft,
Intel, or IBM.

7. REFERENCES

[1] A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal,
N. Kamel, G. Schlageter, and K.-Y. Whang, editors.
VLDB 2000, Proceedings of 26th International Confer-
ence on Very Large Data Bases, September 10-14, 2000,
Cairo, Egypt. Morgan Kaufmann, 2000.

[2] S. Acharya, P. B. Gibbons, and V. Poosala. Aqua: A
fast decision support systems using approximate query
answers. In Atkinson et al. [14], pages 754-757.

[3] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ra-
maswamy. The aqua approximate query answering sys-
tem. In Delis et al. [29], pages 574-576.

[4] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ra-
maswamy. Join synopses for approximate query answer-
ing. In Delis et al. [29], pages 275-286.

[5] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. 1. Verkamo. Fast Discovery of Association Rules. In
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge Dis-
covery and Data Mining, chapter 12, pages 307-328.
AAAI/MIT Press, 1996.

[6] R. Agrawal and G. Psaila. Acive data mining. Proceed-
ings of the first international conference on knowledge
discovery and data mining, 1995.

[7] R. Agrawal and A. Swami. A one-pass space-efficient al-
gorithm for finding quantiles. In S. Chaudhuri, A. Desh-
pande, and R. Krishnamurthy, editors, Proceedings of
the 7th International Conference on Management of
Data (COMAD), December 1995.

[8] M. Akinde, D. Chatziantoniou, T. Johnson, and
S. Kim. The MD-join: An operator for complex OLAP.
In Proceedings of the IEEE International Conference on
Data Engineering, 2001.

[9] Alon, Matias, and Szegedy. The space complexity of
approximating the frequency moments. JCSS: Journal
of Computer and System Sciences, 58, 1999.

SIGKDD Explorations.

[10] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy.
Tracking join and self-join sizes in limited storage.
In Proceedings of the FEighteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of
Database Systems, May 31 - June 2, 1999, Philadel-
phia, Pennsylvania, pages 10-20. ACM Press, 1999.

[11] K. Alsabti, S. Ranka, and V. Singh. A one-pass al-
gorithm for accurately estimating quantiles for disk-
resident data. In M. Jarke, M. J. Carey, K. R. Dit-
trich, F. H. Lochovsky, P. Loucopoulos, and M. A.
Jeusfeld, editors, VLDB’97, Proceedings of 23rd Inter-
national Conference on Very Large Data Bases, August
25-29, 1997, Athens, Greece, pages 346-355. Morgan
Kaufmann, 1997.

[12] M. Altinel and M. J. Franklin. Efficient filtering of xml
documents for selective dissemination of information.
In Abbadi et al. [1], pages 53-64.

[13] T. W. Anderson. The statistical analysis of time series.
John Wiley & Sons, Inc., 1971.

[14] M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B.
Zdonik, and M. L. Brodie, editors. VLDB’99, Proceed-
ings of 25th International Conference on Very Large
Data Bases, September 7-10, 1999, Edinburgh, Scot-
land, UK. Morgan Kaufmann, 1999.

[15] R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. In W. Chen, J. F. Naughton,
and P. A. Bernstein, editors, Proceedings of the 2000
ACM SIGMOD International Conference on Manage-
ment of Data, May 16-18, 2000, Dallas, Tezxas, USA,
pages 261-272. ACM, 2000.

[16] D. Barbard, W. DuMouchel, C. Faloutsos, P. J. Haas,
J. M. Hellerstein, Y. E. Toannidis, H. V. Jagadish,
T. Johnson, R. T. Ng, V. Poosala, K. A. Ross, and
K. C. Sevcik. The new jersey data reduction report.
Data Engineering Bulletin, 20(4):3-45, 1997.

[17] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees. Wadsworth,
Belmont, 1984.

[18] S. Chakrabarti, S. Sarawagi, and B. Dom. Mining sur-
prising patterns using temporal description length. In
Proceedings of the 24th International Conference on
Very Large Databases, pages 606—617, August 1998.

[19] D. Chatziantoniou. Ad hoc OLAP: Expression and eval-
uation. In Proceedings of the IEEE International Con-
ference on Data Engineering, 1999.

[20] D. Chatziantoniou and K. A. Ross. Querying multi-
ple features of groups in relational databases. In Pro-
ceedings of the International Conference on Very Large
Databases, pages 295-306, 1996.

[21] S. Chaudhuri, U. Dayal, and V. Ganti. Database tech-
nology for decision support systems. In IEEE Com-
puter, volume 34, pages 48-55, December 2001.

[22] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Nia-
gracq: A scalable continuous query system for internet

Volume 3, Issue 2 - page 8

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

(32]

[33]

databases. In W. Chen, J. F. Naughton, and P. A. Bern-
stein, editors, Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, May
16-18, 2000, Dallas, Tezxas, USA, volume 29, pages
379-390. ACM, 2000.

Z. Chen, J. Gehrke, and F. Korn. Query optimization in
compressed database systems. In SIGMOD 2001, Pro-
ceedings ACM SIGMOD International Conference on
Management of Data, 2001, Santa Barbara, California,
USA. ACM Press, 2001.

D. Cheung, J. Han, V. Ng, and C. Wong. Mainte-
nance of discovered association rules in large databases:
An incremental updating technique. In Proceedings of

the twelfth international conference on data engineering
(ICDE), February 1996.

D. Cheung, S. Lee, and B. Kao. A general incremental
technique for maintaining discovered association rules.
In Proceedings of the fifth DASFAA Conference, April
1997.

D. Cheung, T. Vincent, and W. Benjamin. Maintenance
of discovered knowledge: A case in multi-level associ-
ation rules. In Proceedings of the second international
conference on knowledge discovery in databases, August
1996.

C. Cortes, K. Fisher, D. Pregibon, and A. Rogers. Han-
cock: a language for extracting signatures from data
streams. pages 9-17. ACM Press, 2000.

R. B. D’Agostino and M. A. Stephens. Goodness-of-fit
techniques. New York: M.Dekker, 1986.

A. Delis, C. Faloutsos, and S. Ghandeharizadeh, edi-
tors. SIGMOD 1999, Proceedings ACM SIGMOD In-
ternational Conference on Management of Data, June
1-3, 1999, Philadephia, Pennsylvania, USA. ACM
Press, 1999.

P. Domingos and G. Hulten. Mining high-speed data
streams. In Proceedings of the Sizth International Con-
ference on Knowledge Discovery and Data Mining,
pages 71-80, Boston, MA, August 2000. ACM.

M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and
X. Xu. Incremental clustering for mining in a data ware-
housing environment. In Proceedings of the 24th Inter-
national Conference on Very Large Databases, pages
323-333, August 1998.

M. Ester, H.-P. Kriegel, and X. Xu. A database inter-
face for clustering in large spatial databases. In Proc.
of the 1st Int’l Conference on Knowledge Discovery in
Databases and Data Mining, Montreal, Canada, August
1995.

Feigenbaum, Kannan, Strauss, and Viswanathan. An
approximate L1l-difference algorithm for massive data
streams (extended abstract). In FOCS: IEEE Sympo-
sium on Foundations of Computer Science (FOCS),
1999.

SIGKDD Explorations.

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

J. Feigenbaum, S. Kannan, M. Strauss, and
M. Viswanathan. Testing and spot-checking of data
streams. In Proceedings of the 11th ACM-SIAM Sym-
posium on Discrete Algorithms, 2000.

Fong and Strauss. An approximate LP-difference algo-
rithm for massive data streams. In STACS: Annual
Symposium on Theoretical Aspects of Computer Sci-
ence, 2000.

V. Ganti, J. Gehrke, and R. Ramakrishnan. Demon:
Mining and monitoring evolving data. IEEE Transac-
tions on knowledge and data engineering, 13(1):50-63,
January-Febraury 2001.

V. Ganti, J. Gehrke, R. Ramakrishnan, and W.-Y. Loh.
A framework for measuring changes in data character-
istics. In Proceedings of the 18th Symposium on Princi-
ples of Database Systems, 1999.

J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y. Loh.
Boat-optimistic decision tree construction. In Delis
et al. [29], pages 169-180.

P. Gibbons, Y. Mattias, and V. Poosala. Fast Incre-
mental Maintenance of Approximate Histograms. Pro-
ceedings of VLDB, Athens Greece, pages 466-475, Aug.
1997.

P. B. Gibbons and Y. Matias. New sampling-based sum-
mary statistics for improving approximate query an-
swers. In Haas and Tiwary [44], pages 331-342.

P. B. Gibbons and Y. Matias. Synopsis data structures
for massive data sets. In Proceedings of the Tenth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
pages 909-910, N.Y., Jan. 17-19 1999. ACM-STAM.

M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In SIGMOD 2001,
Proceedings ACM SIGMOD International Conference
on Management of Data, 2001, Santa Barbara, Cali-
fornia, USA. ACM Press, 2001.

S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. In In Proceedings of the An-
nual Symposium on Foundations of Computer Science.
IEEE, November 2000.

L. M. Haas and A. Tiwary, editors. SIGMOD 1998,
Proceedings ACM SIGMOD International Conference
on Management of Data, June 2-4, 1998, Seattle,
Washington, USA. ACM Press, 1998.

P. J. Haas and J. M. Hellerstein. Ripple joins for online
aggregation. In Delis et al. [29], pages 287-298.

J. M. Hellerstein, P. J. Haas, and H. Wang. Online ag-
gregation. In J. Peckham, editor, SIGMOD 1997, Pro-
ceedings ACM SIGMOD International Conference on
Management of Data, May 13-15, 1997, Tucson, Ari-
zona, USA, pages 171-182. ACM Press, 1997.

M. R. Henzinger, P. .Raghavan, and S. Rajagopalan.
Computing on data streams. Technical Report 1998-
011, Digital Eqipment Corporation, Systems Research
Center, May, 1998.

Volume 3, Issue 2 - page 9

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. In Proceedings of the Seventh
International Conference on Knowledge Discovery and
Data Mining, pages 97-106, San Francisco, CA, 2001.

F. Kilander and C. G. Jansson. COBBIT - A control
procedure for COBWEB in the presence of concept
drift. In P. B. Brazdil, editor, Proceedings of the Eu-
ropean Conference on Machine Learning (ECML-93),
volume 667 of LNAI pages 244-261, Vienna, Austria,
Apr. 1993. Springer Verlag.

M. Klenner and U. Hahn. Concept versioning: A
methodology for tracking evolutionary concept drift in
dynamic concept systems. In A. G. Cohn, editor, Pro-
ceedings of the Eleventh European Conference on Artifi-
cial Intelligence, pages 473-477, Chichester, Aug. 8-12
1994. John Wiley and Sons.

L. Liu, C. Pu, W. Tang, D. Buttler, J. Biggs, T. Zhou,
P. Benninghoff, W. Han, and F. Yu. Cq: A personalized
update monitoring toolkit. In Haas and Tiwary [44],
pages 547-549.

G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Ap-
proximate medians and other quantiles in one pass and
with limited memory. In Haas and Tiwary [44], pages
426-435.

G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Ran-
dom sampling techniques for space efficient online com-
putation of order statistics of large datasets. In Delis
et al. [29], pages 251-262.

L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and
R. Motwani. High-performance clustering of streams
and large data sets. In Proceedings of the 18th Inter-
national Conference on Data Engineering, 2002.

C. Olston and J. Widom. Offering a precision-
performance tradeoff for aggregation queries over repli-
cated data. In Abbadi et al. [1], pages 144-155.

V. Raman, B. Raman, and J. M. Hellerstein. Online
dynamic reordering for interactive data processing. In
Atkinson et al. [14], pages 709-720.

A. Silbershatz and A. Tuzhilin. What makes pat-
terns interesting in knowledge discovery systems. IEEE

Transactions on Knowledge and Data Engineering,
8(6), 1996.

D. B. Terry, D. Goldberg, D. Nichols, and B. M.
Oki. Continuous queries over append-ounly databases. In
M. Stonebraker, editor, Proceedings of the 1992 ACM
SIGMOD International Conference on Management of
Data, San Diego, California, June 2-5, 1992, pages
321-330. ACM Press, 1992.

P. Utgoff. ID5: An incremental ID3. In Proceedings of
the Fifth International Conference on Machine Learn-
ing, pages 107-120. Morgan Kaufmann, 1988.

G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Machine Learning,
23(1):69-101, 1996.

SIGKDD Explorations.

[61] P. Willett. Recent trends in hierarchical document clus-

tering: A critical review. Information Processing and
management, 24(5):577-597, 1988.

[62] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:

A new data clustering algorithm and its applications.
Data Mining and Knowledge Discovery, 1(2), 1997.

Volume 3, Issue 2 - page 10

