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ABSTRACT

We argue that there are many clustering algorithms, be-
cause the notion of “cluster” cannot be precisely defined.
Clustering is in the eye of the beholder, and as such, re-
searchers have proposed many induction principles and mod-
els whose corresponding optimization problem can only be
approximately solved by an even larger number of algo-
rithms. Therefore, comparing clustering algorithms, must
take into account a careful understanding of the inductive
principles involved.
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1. INTRODUCTION

Clustering is a central task for which many algorithms have
been proposed. Regularly, new variants of older methods,
or new approaches emerge while industry demands the es-
tablishment of benchmarks for contrasting these algorithms.
Why is it that there is such a large family of clustering al-
gorithms and such benchmarks are so difficult to develop?

We argue here that there is much confusion at what is at
stake and what is what should be compared. We will first
indicate that the diversity in clustering algorithms is in fact
due to the diversity of induction principles and models. Thus,
we will explain what are inductive principles and what are
models. Then, for a single family of models and an inductive
principle, there are many algorithms to approach the result-
ing optimization problem. However, it is within the context
of a fixed inductive principle that benchmarks can be es-
tablished for comparing clustering algorithms. Thus, there
are many clustering algorithms because there are many al-
gorithms for each inductive principle and there are many in-
ductive principles. Why are there so many inductive princi-
ples? Because clustering is in part in the eye of the beholder.
Inductive principles are just mathematical formalizations of
what researchers believe is a definition of cluster. What con-
stitutes a cluster, or a good clustering, has biases because
of the background of researchers and because of the applica-
tion. This domain knowledge is what constitutes the belief
that there are subgroups among a bulk of data about ob-
jects, and such beliefs mold the structures used to represent
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those groups. Thus, differences on inductive principles are
philosophical but fundamental. Nevertheless, we propose
some mechanisms that may be used to compare inductive
principles and then to compare clustering algorithms.

The paper is organized as follows. First, we provide the
necessary definitions, notation and examples to clarify the
notions of inductive principle, models and algorithms. Sec-
tion 3 presents some problems derived from the lack of ex-
plicit discussion of models and induction principles when
presenting an algorithm. It intends to illustrate that diver-
sity is necessary and useful; but has lead to some confusion
about the properties of algorithms. The effect of this lack of
clarity and detail is a difficulty to compare algorithms. Sec-
tion 4 summarizes our recommendations. The Appendix.
presents an illustration of the points in Section 3.

2. DEFINITIONS

Cluster analysis has been identified as a core task in data
mining [30]. The definitions in the literature of what con-
stitutes clustering reflect the different philosophical points
on the matter. The top-down view regards clustering as
the segmentation of a heterogeneous population into a num-
ber of more homogeneous subgroups [3]. A bottom-up view
defines clustering as finding groups in a data set “by some
natural criterion of similarity” [12]. There are others who
believe that the fundamental question is if two items are or
not in the same cluster. Specifying the natural criterion of
similarity of points is a step towards indicating how to ac-
count for similarity between groups. Some intuitive notion
of what constitutes cohesive groups result in an induction
principle. In fact, most authors find difficult to describe
clustering without some suggestion to grouping criteria. For
example, “the objects are clustered or grouped based on the
principle of mazimizing the inter-class similarity and mini-
mizing the intra-class similarity” [30, Page 25].

Clustering applications have grown since all sorts of scientific
disciplines are based on built or discovered classifications
that structure knowledge. In KDD, this is much more ap-
parent, since we are supplied with constantly growing data
sets for which we are to discover those classifications. Clus-
tering generates concepts provides generalization, data sum-
marization and is an inductive process. Given a data set,
any clustering (produced by an algorithm or a human) is
a hypothesis to suggest (or explain) groupings in the data.
This hypothesis is selected amongst a large set of possibili-
ties and is represented (structured) in some way. It becomes
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a model for the data, and can potentially constitute a mech-
anism to classify unseen instances of the data.

What discriminates one hypothesis over another given the
same data set? This criterion is what we refer to as the
mathematical formulation of the inductive principle. It has
also received the name clustering criterion [20; 28; 27]. Thus,
models are the structures we are willing to use to represent
clusters, while the induction principle selects a “best fit”
model given a data set.

For simplicity we assume that the data D is given as n
d-dimensional vectors {f1,...,#,} C R¢ (although, some
other forms of input are possible, like n object identifiers
and a similarity function s that measures the separation
s(i, 7) between each pair 7, j of objects). Lets look at three
examples of induction principles. The literature of paramet-
ric statistics (sometimes referred as statistical inference) will
attempt to fit a probabilistic model to the data. Typically,
mixture models of normal distributions. In this case, the re-
searchers is inclined to believe that the data D is the result
of a fixed number %k of classes, each of which is distributed
according to a multivariate normal distribution N », and
that they are combined by a vector of non-negative propor-
tions 77 = (w1, ..., 7x) (with Ele m; = 1). Then, the prob-
ability distribution is given by Prob(Z) = Ele TN, 5, (L).
Most importantly, the researcher works under the assump-
tion that each data item was independently drawn form that
mixture, and believes that future (new) data will result from
such a mixture and what is actually missing are the param-
eters 7, p; and ¥;. Once these parameters are estimated
(discovered), we can know the proportions in the clusters,
their location and scatter, and for each individual item, the
probability that it belongs to the i-th cluster. We can use
the model to do predictions, etc.

But how to chose the set (#, (&5, Xi)i=1,...,k) that best ex-
plains the data. What is the inductive principle? A tra-
ditional approach is Maximum Likelihood(ML). This says
“choose the model that mazimizes the probability of the data
being generated by such model’ [34]. For many models, the
observed data has probability different of zero, but we asses
the model as best in proportion to its likelihood. This al-
lows an explicit mathematical expression for the inductive
principle. We have an optimization problem!

Maximize ML(7, (17i, 3i)i=1,...k)
= Prob(D|(7, (115, Bi)i=1,... k)- (1)

How we solve this multi-variate optimization problem? What
is the common algorithm used in this case? By equating the
gradient of log ML to zero, sufficient (but not necessary)
conditions for the optima are obtained that lead to an iter-
ative algorithm (heuristic) [47; 50]. This iterative algorithm
converges to local optima an is the well-known EXPECTA-
TION MAXIMISATION method [9].

But what if we are convinced that each data item belongs
to one and only one class, instead of having a degree of
membership to each class assessed by a probability? What
if we change our model? What can we use then as our
inductive principle? Because we are to partition a set into
more homogeneous clusters, we need to asses homogeneity.
The statistical theory of multivariate analysis of variance
suggests a starting point for evaluating homogeneity. This
starting point is the structure of total scatter matrix 7. A
traditional measure of the size of this matrix is the trace.
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The trace of a square and symmetric matrix is just the sum
of its diagonal elements, and thus minimizing trace[T] is
exactly the least sum of squares loss function (known in the
statistics literature as Lo [46]):

minimize Ly(C) = ZEUCLIDQ(@, REP[Z;,C]), (2)

i=1

where Buctin(#,7) = (% - )(Z — 9)"1"/* = [, le; -
y;|?]*/? is the Euclidean metric; C' = {1, ..., } is aset of k
centers , or representative points of R%; and fori =1,...,n,
the point REP[Z;, C] is the closest point in C to Z;. Note that
Equation (2) is the search for a set C of k representatives.
This is illustrative of representative-based clustering: the
partition into clusters is defined by assigning each #; to its
representative REP[Z;, C].

The k-MEANS method produces an approximate solution to
Equation (2) by iteratively refining the partition encoded by
the representatives.

The inductive principle formalized in Equation (2) says “pick
the model (set of k representatives) that minimizes the to-
tal squared error”. The problem with means is that they are
very sensitive to outliers. The value EucLiD?(&;, REP[Z;, C])
is the squared error of representing &; by its representative
and will be dramatically large when Z; is an outlier. A more
robust estimator of location is the median [46]. This corre-
sponds to the induction principle that says “pick the model
(set of k representatives) that minimizes the total absolute
error”. The mathematical formulation for this clustering
criterion is

minimize L;(C) = Z EucCLID(&;, REP[Z;, C]). (3)

i=1

While Equation (2) and Equation (3) only differ on the
squaring of the error, we will see in the next section that
they constitute radically different computational problems.
! For example, in the case of just one cluster (k = 1), the
global minimum of Equation (2) can be obtained in ©(n)
time while for more than one dimension, Equation (3) is
theoretically intractable.

Aldenderfer and Blanshfield state that “clustering is struc-
ture imposing”[3]. The universe of structures we are pre-
pared to believe are suitable to reflect the variations in den-
sity on a set of data constitute our models. An inductive
principle will make explicit a criterion to select a best-fit
for a given data set. For a given inductive principle, each
new data set will posse an optimization problem. Namely,
find the model that optimizes the criteria given the data.
Since the resulting optimization problems are typically in-
tractable or their algorithmic complexity is beyond what
would be acceptable in practice for the large data sets that
KDD has in mind, the optimization problem is solved ap-
proximately. For the same optimization problem there are
usually may heuristic algorithms that will trade-off the qual-
ity of the optimization (the quality of the local optima) for
their computational effort.

!Note that L; and Ly are used in the statistical literature
for loss functions that measure error; we use them here in
this sense. However, the literature in metric spaces uses Ly,
for the p-th Minkowsky metric; with L; usually know as the
Manhattan metric and Lo used as the Euclidean metric. We
do not use L here in this sense.
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3. THE PROBLEMS

The notions of induction principle, model and clustering al-
gorithm, apply in a general manner to clustering algorithms.
We say that a context for a clustering algorithm is the pair
(model, induction principle) that applies to the algorithm.
Because the context around a clustering algorithm is left to
implicit interpretation, rather than explicitly described, and
because research efforts have been focused on other desider-
ata (like scalability or applicability to data formats), confu-
sion has emerged whose direct effect is the difficulty in com-
paring algorithms and contrasting clustering results. We
elaborate on what are some of these sources of confusion.

3.1 Model or Induction principle

Representative-based clustering typically finds a prototype
item for each cluster. Algorithms for this approach include
EXPECTATION MAXIMISATION [9], k-MEANS [40], Fuzzy-c-
MEANS [5], and many others [21]. The terminology to de-

nominate the representatives of clusters as “centers”, “means”,

“medians” and even “medoids” has proliferated freely to the
point that its difficult to identify if the name refers more to
the model or to the induction principle. It is well estab-
lished in the statistical literature that the observed mean is
the point ji that minimizes Lo(ji) = Y1, EucLID(Z, fi)>.
This is the case K = 1 for Equation (2). It can be solved
analytically using multidimensional calculus and results in
& = >.i_; &i/n. The observed mean can be computed in
O(n) time and no faster algorithm is possible. This is an
unbiased estimator of the mean of a multivariate normal
distribution under the assumption that this is the proba-
bilistic model for the data. However, the median of a cloud
of points is obtained from a different induction principle
that removes the squaring. Namely, minimize FW (i) =
Ly (fi) = Y7, EUCLID(Z, ). This problem is intractable for
dimensions d > 1 [4]. The solution is the famous Fermat-
Weber center [38; 39]. Thus, the distinction between “mean”
and “median” is a distinction on the induction principle.
While the median is statistically superior on notions like ro-
bustness and resistance [46], the mean is algorithmicly easy
since its computation requires O(n) time. Researchers have
restricted the universe of models because of the algorithmic
complexity of using medians in more than one dimension
(the case d > 1). That is, the universe where the solution
is searched for is all points in d dimensional space (for the
case of k representatives, Equation (2) and Equation (3) re-
main continuous optimization problems where the universe
is the sets of k points in d-dimensional space). By adding
the restriction i € D, these problems become discrete opti-
mization problems. The discrete mean is the solution to

n

minimize Ly(p) = » BEUcLID(Z, i)’
i=1

restricted to g ED.

This is also solved in linear time, since it is the closest point
to the observed mean. The discrete median problem is

minimize FW(#) = L1(j)
= ZEUCLID(%’, i)
i=1

restricted to fZeD.

This has a trivial O(n?) algorithm which essentially consist
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of exhaustively evaluating FW(Z) for all g € D.

It seems that the term “medoid” is used interchangeably
to refer to the discrete median and the discrete mean [41;
30]; although, it certainly would be more appropriate to
use it only for the discrete median. The term “medoid”
was originally introduced to indicate discrete median [36,
Chaper 4] in the statistical literature and imported [41] to
KDD with exactly the same meaning of representatives that
are data points and minimize the absolute error.

In any case, this reflects the interest in the KDD commu-
nity to distinguish clustering algorithms more on the mod-
els (which is more about the computability) than on the
induction principle (which is certainly an issue on the qual-
ity of the clustering). The difference in induction principle
is the more fundamental. Solving L, with continuous or
discrete centers is sensitive to outliers and noise [46]. The
statement “the k-medoids method is more robust than the
k-means method in the presence of noise and outliers” [30,
page 353] is misleading since the algorithms described in [30]
are both using L, as the cost function.

In the appendix, we illustrate that the quality of the cluster-
ing in the presence of noise would not be comparable even
if we were to find the global optimum to Equation (2) (by
an algorithm far better that k-MEANS in approximating the
solution). A good approximation of Equation (3) with the
model restricted to (C C D) A (||C|| = k) [19] is superior.
The latter is an inductive principle whose solutions are ro-
bust to noise (in the same statistical sense in which medians
are robust estimators of location and means are not [52]).
Thus, many of the disadvantages attributed to k-MEANS are
really inherited from its context. The k-Medoids methods
in [30] and its variants (like CLARANS) will not alleviate
these problems if they use a less robust inductive principle.

3.2 Categorization of algorithms

Despite the quality of the results is primarily dependent of
the induction principle rather than on the model, the em-
phasis on computability/scalability of the KDD literature
has shaped categorization of clustering algorithms on the
model with little emphasis on the induction principle. These
categorizations of clustering methods are along dimensions
that include the type of algorithm used in the optimization
and under close scrutiny, their boundaries are blurry. The
final result are misleading categorizations of clustering algo-
rithms. Han & Kamber [30] offers one of these many catego-
rizations. (but others could be scrutinized similarly, another
example of similar categorization is by Jain et al [33]). For
example, in [30], the category named “Partitioning Meth-
ods” corresponds more accurately to representative-based
clustering (again, k-MEANS, EXPECTATION MAXIMISATION,
Fuzzy-c-MEANS, etc) that are clearly methods based on
mathematical models (probabilistic models, and fuzzy mem-
bership models). In fact, all the examples supplied for this
category are examples of representative-based clustering, ig-
noring examples of partitioning clustering not based in rep-
resentatives (like methods based on the inductive principle
of Total within Group Distance [17] or methods based on
finding cuts on graphs [14; 35]).

There is no reason to have another category for “Model-
based methods”. The methods comprising this category are
AUTOCLASS and CLASSIT, also based on mathematical
models of distributions from probability theory and statis-
tics. Perhaps AUTOCLASS is closer to Bayesian statistics

Volume 4, Issue 1 - page 67



while EXPECTATION MAXIMISATION is closer to parametric
statistics. Nevertheless, the boundary between these two
categories of clustering algorithms is certainly insufficient
to justify their separate naming.

But, are other categories (like Hierarchical Methods, Density-
Based methods and Grid-Based methods) not based on mod-
els? The position of this paper is that they are certainly
based on models. Not continuous mathematical models like
probability distributions, but on discrete, structural models.
For hierarchical methods, their context includes an induc-
tion principle as well. Hierarchical methods search the tree
that best fits the data among the family of all trees with
the data at the leafs. And in fact, several criteria have been
proposed as explicit formulations of the induction principle.
In almost all cases, the corresponding optimization prob-
lems have been shown to be NP-Hard or NP-complete [8;
25]. Consider why the dendrograms produced by these algo-
rithms are binary. That is, why do divisive algorithms split
a cluster into two (and not k parts) and why do agglom-
erative algorithms merge just the next two closest clusters
and not consider merging more? Simply because criteria,
like complete linkage and so an are NP-complete for split
numbers larger than 2 [25; 8, page 281].

Thus, the family of hierarchical clustering algorithms is also
a series of heuristics to find good approximate solutions.
Structural models also are the type of models used by density-
based algorithms. Just think what type of output this algo-
rithms produce®. Algorithms like CHAMELEON [35] and
DBSCAN [15] produce as output a graph G. This graph G
represents (encodes) the relation #; is in the same cluster as
Z; with the predicate “there is a path in G from Z; to &;”.
That is, these algorithms search for the graph that best fits
the data. The graph may be represented by its adjacency
matrix (although this may require Q(n?) time and space,
which may be infeasible for Data Mining). Also, many im-
plicit mathematical models are hidden under the algorithms
(for example, a simple model to eliminate outliers is inside
CURE [26], while a model for the types of distributions is
implicit in BIRCH [56] which maintains a tree of nodes with
estimators of location and scatter). Even methods like DEN-
CLUE [31] are based on kernel models and selecting these
kernels is crucial. The convergence of neural network algo-
rithms for unsupervised learning is based on showing that
some measure of error (perhaps the total squared error) is
improved, and again this is a reflection on an iterative opti-
mization (gradient descent) converging on a local optima.
However, the presentation of clustering algorithms in the
database literature becomes more and more imprecise about
the inductive principle, and fundamentally, proponents of
these methods leave undefined what are “good clusters”.
They delegate this responsibility to the user by making the
algorithms depend on arguments supplied by the user (so
called parameters of the algorithm). As a consequence, the
results vary widely with changes to these user-supplied ar-
guments. Because of this, comparisons between these algo-
rithms seem impossible or at best inconclusive. The posi-
tive side is that the types of representations for clusters is
extended. We have more flexible representations, and thus,
other intuitive notions of clusters seem supported (like non-
convex clusters).

?Categorizing Data Mining and Machine Learning algo-
rithms by their type of output format is not unusual [54].
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The point is that differences that impact heavily on the qual-
ity of results are relative to their context (model, induction
principle) and not only to the working of the algorithm.
One more illustration is the distinction between partition
methods and hierarchical methods. Partitioning algorithms
result directly into so called Divisive hierarchical clustering.
Simply, the top-down strategy applies the partitioning algo-
rithm at each node of the hierarchy. Hierarchical algorithms
with a ‘criteria’ for stoppage (an induction principle) result
in partitioning algorithms. Similarly, crisp membership of
items to a cluster versus non-crisp membership is simply and
issue of modeling. The actual working of algorithms like
Fuzzy-c-MEANS, EXPECTATION MAXIMISATION, k-MEANS,
HARMONIC-k-MEANS is extremely similar [16; 22].

Some researchers have created a direction that considers the
size or complexity of the model in the formulation of the
induction principle. For example, MDL [45] and MML [51]
are pioneer approaches in this regard.

3.3 Trade-offsin optimization

So why do we insist on using algorithms whose context
(models, induction principle) is known to be inferior at fun-
damental levels than others. The simple answer is that
the computation of the objective function (the evaluation
of a feasible solution for optimization) may be much less
costly. Consider criteria like the Total Within Group Dis-
tance. Given a partition P = {C1|C2|...|Cr} of the data
into k non-empty, not overlapping (C; NC; =0, i # j) sets,
the criteria is formalized as follows.
k
Minimize TWGD(P) =Y > dist(&i,%s). (4)

J=1&;,8; €C;

Evaluating this criterion in one model (a partition of the
data into k clusters) requires ©(n?) time because ©(n?)
distance evaluations are involved. However, evaluation of
Equation (2) on a partition can easily be performed with
O(kn) distance evaluations. Therefore, a hill-climber type
of algorithm like k-MEANS will be extremely fast with re-
spect to an equivalent naive hill-climber for Total Within
Group Distance.

Therefore, we observe that it is natural to prefer optimizing
an induction principle P; whose objective function is easier
to evaluate than to optimize an induction principle P2 whose
objective function is much costly to evaluate. Although not
proved formally, much of this approach is current practice
and hopes that the optimization of the simpler objective
function results in a good approximation to the complex
objective function. The point of this paper is that this calls
for a comparison between induction principles, not between
clustering algorithms. Clustering algorithms should be com-
pared in a first instance for a common context (model, in-
duction principle).

For example, the Fuzzy-c-MEANS algorithms is an iterative
algorithm (a la k-MEANS) to optimize the following problem.

minimize Fuzzyy(C)
k n
= Z Z [MEM; (Z;)]° EucLiD® (&, &), (5)
j=11i=1

restricted to E§:1 MEM;(#;) = 1 (for ¢ = 1,...,n) where
the parameter b > 1 regulates the degree of fuzziness. How-
ever, the same optimization problem has been attempted
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recently with Genetic Algorithms [29]. In this case, the Ge-
netic Algorithms and the iteratively local search can be com-
pared rather objectively as to which obtain the best value
for Equation (5) given the same computational resources
(function evaluations).

The point here is that clustering with genetic algorithms,
simulated annealing or other search/optimization techniques
besides local search (and hybrids of these) offer better clus-
tering algorithms if they are more effective in the trade-off
of quality of the answer versus computational resources with
respect to the same clustering criteria [16].

3.4 Cluster validity

The popularized definition of KDD [24] postulates it as the
“non-trivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in data”. We
are unsure if valid is listed amongst the first characteristics
in proportion to its importance, but certainly, patterns in
data will be far from useful if they were invalid. A more
cynical view would say that trivial processes can certainly
deliver invalid, understandable and novel patterns. So, the
validity of results is of up-most importance. But, how is this
achieved in clustering algorithms?

Validity is a certain amount of confidence that the clusters
found are actually true [11]. That is, the hypothetical struc-
ture postulated as the result of a clustering algorithm must
be tested to gain confidence that it actually exists in the
data. Kloesgen and Zytkow state that “validation checks a
pattern instance (or component of an instance) referring to
the subset of data in the sample set which is connected with
the instance. To check an instance, usually a statistical test
or some other criteria are validated. Additionally to the de-
cision, whether an instance is valid or not, often also an evi-
dence measure (the statistical significance or some other kind
of conspicuousness of a pattern instance) is calculated” [37].
We would be required to test if the clusters found by the
algorithm are “real’[page 16] [3]. This question has faced
many difficulties, and Bezdek [5] dedicated a full chapter to
it. Bezdek realized that it seemed impossible to formulate
a theoretical null hypothesis used to substantiate or repu-
diate the validity of algorithmically suggested clusters. The
simplest of questions seemed to be, are there truly k£ groups.
Bezdek suggested that indexes of error with respect to al-
ready clustered data are “useful ezpedient for performance
comparisons of different algorithms’ [5, page 95]. He consid-
ered extending those indexes to be used to select the number
¢ of clusters in Fuzzy-c-MEANS. This question of how many
clusters are truly in the data was also critical for cutting den-
drograms or stopping hierarchical clustering algorithms [23].
However, there is no definition of “cluster” and as such, the
“concept of no structure in the data set (one possible null
hypothesis) is far from clear” [3] (although three types of
reference population under the null hypothesis are used for
small data sets [32; 49]).

Unfortunately, some of the literature on “cluster validity”
has rapidly evolved after Bezdek’s work (specially in the
area around Fuzzy-c-MEANS [6; 42; 53; 44]). The many
developed indexes are now used [43] to plug-in clustering
results for algorithms that require the number k£ as an user
supplied argument (typically, for partitioning algorithms like
k-MEANS, EXPECTATION MAXIMISATION, FUZzZY-c-MEANS).
Clustering is repeated with the argument k tested for a range
of values k € {2,..., Kmax}. The value of k resulting in the
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smallest value for the index is considered the “valid” cluster-
ing. While some researchers may be seduced by a perception
that results are trustworthy this is far from actually provid-
ing a real test for validity.

In an attempt to allow the subjective nature of what con-
stitutes a cluster, the identification of clusters may involve
the end-user [2]. This creates potentially useful exploratory
tools [1]. Placing the user in the loop allows flexible and ap-
plication oriented clustering but because of its incorporation
of human bias the question of validity becomes even more
critical. The exploratory analysis may not discover new true
clusters but allowing the user to select views/projections of
the data reflecting preconceived notions. Thus, a subsequent
confirmatory phase with sound statistical methodology is es-
sential after the exploratory phase.

Clear and comprehensive descriptions of the statistical tools
available for cluster validity are Chapter 4 in the book by
Jain and Dubes [32] and Chapter 16 in the book by Theodor-
idis and Koutroumbas [49]. Dubes [11] offers a uniform view
of the methodology towards validity, but clearly, what con-
stitutes data with no structure (and is simulated generation)
are central to the entire process. Consider two dimensional
datasets layered in the pattern of chess-board where param-
eters like the granularity of the grid and the discrepancy in
density on black and white regions varies. Despite the reg-
ular structure in such a family of data sets, any clustering
algorithm will be able to test only a finite set of hypothesis
in finite time. So there are many datasets of these family
that will appear to have no structure.

We will show here that this so called family of internal
validity techniques is simply a larger family of induction
principles that perhaps guides the optimization of the user-
supplied arguments in a family of clustering algorithms.
These internal validity measures are based solely on the data
to be clustered (without any class labels). In that sense, we
agree with Dom [10]: “Why not just use this measure itself
as an objective function for clustering?” This may be in fact
possible in some cases where the objective function used does
eractly capture what is desirable in a particular application
and there is a feasible algorithm for finding the optimal clus-
tering. In such cases the (quality [sic]) evaluation is moot.”
We illustrate internal validity with some induction principles
discussed here earlier. Formal clustering criteria have been
provided (Equation (2), Equation (3) and Equation (4)).
However, how do we select the value k for the number of
clusters required by the algorithms that approximately solve
this optimization problems? The difficulty is that these cri-
teria (and many others) are monotonically decreasing in k.
Thus, minimizing the criteria set by the induction princi-
ples along the argument k results in the trivial clustering
that places each point on a cluster by itself.

Researchers have suggested to create an alternative crite-
ria to decide on the value of k. In the KDD literature, the
silhouette coefficient is mentioned [30] because it was im-
ported by Ng and Han [41] from the work of Kaufman and
Roussseeuw [36]. This is one of the many indexes that follow
the generic scheme consisting of evaluating the ratio of inter-
cluster separation and intra-cluster similarity (like Dunn’s
partition coefficient and its variants [13]). However, Kauf-
man and Roussseeuw [36, page 121] admit that “like most
validity coefficients, the average silhoute 5 could be used as
an objective function for the clustering itself (that is, one
might want to find a clustering that mazimizes 3)”.
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A simple example of this family of validity coefficients [43]
is to study a specific trade-off in cluster cohesion and sep-
aration. Letting L2(C)/n be a measure of cohesion (the
average squared representation error), we can define a mea-
sure of separation as Sep(C) = ming, c;ec EucLin?(&;, &);
that is, the smallest squared distance between two repre-
sentatives. An algorithm is executed many times with its
argument k set to many values in [2,7n]. Then, the value of
k selected is the value that minimizes the objective function
Ly(C)/(nSep(C)) among the results produced in the many
runs. The objection put forward here is the use of these
types of objective functions as “validity indexes” while in
fact they are just clustering criteria. If we directly optimize
Ly(C)/(nSep(C)), and obtain a lower value (rather that op-
timizing for each given k), would the results be more valid?
Of course not. There is a large list of proposed indexes for
validity that essentially correspond to formulations of clus-
tering criteria [11]. They do not seem to be used as the
objective function for a clustering algorithm for apparently
two reasons.

e Some of them do not have a minimum, and are rather
used with the help of visualization to search for a
change in the plot generated by the index.

e They are very expensive to evaluate, and any opti-
mization heuristic would have to pay the performance
penalty of costly evaluation of the objective function.

The point is that in the absence of anything else, (like a
Monte Carlo procedure [3] and an effective way for gener-
ating data sets with no structure [32; 49]) these indexes are
merely more elaborate mathematical formulations of clus-
tering criteria reflecting an induction principle.

Another very common approach for internal validity has
been named cophenetic correlations. Although believed to
be applicable only to hierarchical clustering algorithms, the
idea is simple enough to be applicable in general. The ap-
proach assumes that we have the dissimilarity matrix D =
[dij] where d;; = dissimilarity(Z;,Z;). This is the input
to the clustering algorithm and it is usually supplied as a
function (because if represented explicitly as a matrix, it de-
mands O(n?) space). The output of the clustering creates
an implied similarity matrix M = [m;;]. One simple implied
similarity matrix is

(6)

A representation of such a matrix is the result of many al-
gorithms (like DBSCAN [15]). The validity then consists of
assessing the distance (correlation) between the matrix D
and the matrix M. As a validation technique, this approach
is regarded as one of the weakest [3] (although others con-
sider suitable under carefully chosen assumptions [32]). In
some cases, it is obvious why this just represents an induc-
tion principle. Consider the following clustering procedure
for applications where we have a dissimilarity matrix D with
all the values between 0 and 1. Construct a matrix A simply
rounding D. Values larger that 0.5 in D are rounded to 1
in A and value smaller than 0.5 in D are rounded to 0 in A.
Then, find connected components in A to produce clusters.
In other words, M is the transitive closure of A. The fact
that M is almost a direct function of D is certainly going
to indicate high correlation between M and D, but are the
clusters found by this method valid?

e — 0 if &;,&; in same cluster
* 1 if otherwise.
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An approach to clustering based on a simple matrix M given
by Equation (6) has been used for clustering WEB docu-
ments [55]. So let M the simple implicit matrix derived from
a clustering result (from a partition) and given by Equa-
tion (6), and consider two of these indexes that compare
matrix D and the matrix M [32].

1. The Hubert I' statistic is given by

n—1 n
2
i=1 j=i+1
2. The Normalized T" statistic is given by
n—1 n
2 (dij — (D)) (mi; — p(M))
n(n —1) ;];1 o(D)o(M) , (8)

where [i(X) is the observed mean in the values of ma-
trix X and o(X) is the observed variance in the values
of matrix X.

Equation (7) and Equation (8) are both functions of the par-
tition of the data. The Normalized I' has range [-1.1]. It is
possible to imagine a clustering algorithm that performs a
hill-climbing of the space of all partitions into k clusters op-
timizing either of these functions. This optimization should
not be interpreted as obtaining valid clusters, but it would
constitute interesting clustering algorithms. Algorithms are
a product of optimizing an induction principle, validity is a
function of the data set.

Typically, these indexes have to be used inside some more so-
phisticated procedures for validity (like Monte Carlo meth-
ods [3] and their suitability depends on the application, the
randomness hypotheses and the internal/external/relative
methodology [32]). But naturally, this also implies a prolif-
eration of indexes for validity, as they reflect different types
of structure that are sought for in the data.

How can we compare clustering algorithms if we cannot tell
if the results are valid? We believe researchers can approach
this issue in two ways. First, use external validity measures.
That is, use datasets with known structure and evaluate
how much structure is recovered by the clustering algorithm.
Then, publicize and distribute freely those data sets and de-
tail the process of production so others can replicate the
results. Later, validity indexes can be used to asses if al-
gorithms (not designed with the induction principle of the
validity index in mind) can also work to obtain good solu-
tions on a different context. The comparison would now be
on the context of the validity index. This second alternative
will not allow researchers to conclude that one algorithm
is superior to another beyond the context of the induction
principle reflected by the particular validity index used. An
algorithm may be considered better than another if it sur-
passes the performance of another across a large range of
validity indexes.

However, it is unlikely that a set of validity indexes is ac-
cepted as a benchmark on which clustering algorithms are
evaluated. This will restrict the possible points of view on
what constitutes “good clusters” to the induction principles
mathematically formulated as validity indexes. Neverthe-
less, I encourage researchers who postulate new clustering
algorithms to be more explicit about what is to be regarded
as good clusters. I suggest to perform and report empirical
evaluations on those clustering criteria (induction principles
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or validity indexes) they consider suitable contexts for the
proposed algorithm.

4. CONCLUSIONS

The nature of clustering is exploratory, rather than confir-
matory. The nature of data mining is that we are to find
novel patterns, that is, previously unknown and unsuspected
patterns. “The strategy of cluster analysis is structure seek-
ing although its operation is structure-imposing” [3]. There
are many ways in which the potential structure could be
imagined and represented. Already in 1964, Bonner argued
that there could not be a universal definition of cluster and
that it was to late to impose one [7]. Much more recently, we
find that clusters and outliers are in the eye of the beholder:
“one person’s noise could be another person’s signal’ [30].
This is an element that contributes to the diversity. Out of
all those possible models for the patterns, we need to ex-
tract only those that are intuitively good clusters. Again,
there are many ways in which the inductive principle can be
formalized into a clustering criterion.

We conclude then with a summary of recommendations.

1. Do not forget that clusters are, in large part, on the
eye of the beholder.

2. Different researchers make explicit what are good clus-
ters by different mathematical formula. There is a
richness in this diversity.

3. While it is natural that surveys or compilations of
clustering algorithms categorize (or build taxonomies)
based on models more than induction principles, these
categorizations should not imply the non-existence of
models or induction principles. The strongest dis-
tinction between clustering algorithms is between the
adoption of mathematical (continuous) models (com-
mon in statistical inference) and the structural (dis-
crete) models (common in machine learning).

4. Clustering translates into optimization problem whose
computational complexity is typically intractable and
which are solved by approximation algorithms.

5. The first level of comparisons between two clustering
algorithms, is in terms of the quality of the solution
as measured by the same objective function and on
equal computational resources (for example, number
of evaluations of the objective function).

6. There are objective functions (inductive principles) that
are less costly than others. It is natural to seek to op-
timize those that are less costly in the hope that solu-
tions to these would be good solutions for the costly
objective functions. However, this implies that one
must investigate the relationship between the induc-
tive principles (and at a second stage, between the
clustering algorithms).

7. There is a way to compare inductive principles P; and
P, by obtaining formal results that indicate how the
good solutions for P; rank among the good solutions
for P,. Some of these can be clear and formal notions,
like statistical robustness.

SIGKDD Explorations.

nnnnnnn i poins Data poins (9.019)rom ast o components

Figure 1: (a) A data set. (b) The data of last two compo-
nents.

8. Researchers should try to make (mathematically) ex-
plicit what are their models and their inductive prin-
ciple when proposing new or improved clustering al-
gorithms. This should facilitate further investigations
and comparison with previous and emerging methods.

9. Indexes of clustering validity are direct mathematical
formulations of induction principles. Comparing algo-
rithms on those can provide some insight about the
contexts in which one algorithm performs better than
another. However, this shall not imply than one algo-
rithm produces more valid results than another. Valid-
ity depends on the data set where a claim of existence
of structure is made. The two algorithms on a set with
no structure will both produce invalid results.

10. Quality of clustering can be demonstrated by external
criteria of validity and associated measures. How much
of the (known) structure can the algorithm recover.
In this sense, data sets for supervised learning can be
used for evaluating clustering algorithms. We measure
the discrepancy between the clustering results and the
known labels.

11. An algorithm designed for some universe of models
has no chance if the data sets have a structure that is
actually representable by a radically different family of
models (k-MEANS can not find non-convex clusters).
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APPENDIX
A. AN EXPERIMENTAL ILLUSTRA TION

We present experimental results that illustrate some of the
points made earlier. We use low dimensional examples for
illustration and visual clarity, but the arguments can only
be more severe in larger dimensions.

Our first experiment will show that the inductive principle
formulated by Equation (2) is less effective than the induc-
tion principle formulated by Equation (3).

The data used in the experiment are 10,000 2-dimensional
points generated by a mixture of 4 bi-variate normal dis-
tributions with circular level curves (diagonal covariance
matrices). The mixture .+, mNj, =, (&) has proportions
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Figure 2: (a)The data of first two components. (b) Location
of components.

Figure 3: (a) Result with k-MEANS. (b) Optimizing L» with
TAB.

given by n7 = (0.05, 0.05, 0.4,0.5). The centers of the com-
ponents are i1 = (0.10,—3.60), f3 = (4.90,1.82), il =
(—1.59, —4.83), and i = (—8.11,—8.69). While the covari-
ance matrices X3 and X4 of the last two components are
both equal to the identity matrix, the covariance matrices
of the first two have larger elements ( $1 = diag[10?,10?]
and Xy = diag[20%,20%] ).

Thus, the first two have large dispersion and small propor-
tion and can potentially be interpreted as “noise”. They rep-
resent about 10% of the data (981 data points). Figure 1 (a)
displays our data set. In this figure, the last two components
of the mixture appear amongst the cloud of “noise” of the
first two components. Figure 1 (b) displays the data of the
last two components. These two components appear as well
separated circular clusters. Figure 2 (a) shows the data of
the first two components labeled with their component mem-
bership (those points generated on the first component are
marked ¢ while those of the second component are marked
+). This graph allows us to verify that the dispersion of the
second component is much larger than the dispersion of the
first. Figure 2 (b) displays the true centers of the 4 compo-
nents against a subset of the data. This allows to locate the
components while not over-crowding the plot.

We look first at typical results obtained by k-MEANS with
k = 2 (refer to Figure 3 (a)). The resolution in this figure
and those that follow is increased with respect to the previ-
ous figures (see scale on axes’ labels). The centers of clusters
proposed by the algorithm are indicated with 0. Clearly, the
solution is very poor, resulting in merging the two large com-
ponents as a single cluster and placing one center almost
arbitrarily far towards the top-right corner of the figure.
Figure 3 (a) displays the boundary separating the classifi-
cation by k-MEANs. This line corresponds to the bisector
of the two centers found by this algorithm. The only plus
is that this algorithm requires O(n) time to approximately
optimize Lp! But what if we use medoids to optimize the
L, criteria (total squared error) as suggested in [30]. With
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Figure 4: (a) Optimizing L, with CLARANS. (b) Result
with k-MEANS.

Result of randomized TaB on 10,000 points contrasted with sample of 100 points
20 T T T T T T

medoids %

Figure 5: L; with randomized TAB.

an interchange heuristic this requires O(n?) time. k-MEANS
required under 3 seconds of CPU time, while this algorithm
required 7 hours of CPU time. Although it is expected that
an algorithm that requires this much more time should do
better than the linear algorithm there is no improvement (re-
fer to Figure 3 (b)). By contrast, CLARANS [41] performs
a restricted window interchange to ensure faster processing,
but its results to approximately solve Lo are almost as bad
as k-MEANs(refer to Figure 4 (a)). Although the results
seem better for CLARANS, CLARANSwill always reach
an inferior solution with respect to Lo than the interchange
heuristic.

Using medoids in the original sense of discrete medians (op-
timization) and an O(n+/n) (subquadratic) randomized al-
gorithm [22; 18] to improve on the Tab interchange heuris-
tic [48], we obtain essentially perfect results (refer to Fig-
ure 5). The optimization of a more robust induction princi-
ple makes all the difference. Although some computational
cost must be paid with respect to k-MEANS, if one is pre-
pared to pay for the cost of CLARANS(or an interchange
heuristic for L2), one may as well optimize L.

Our second point is now with respect to the use (or misuse)
of validity indexes. Suppose we use k-MEANS on the data
described earlier, with k = 1,...,4. And we compute the va-
lidity index L2(C)/nSep(C) for k = 2,...,k. This validity
index for k = 1 is undefined, and this is natural since in this
case we are after clusters and not declaring the entire data
one group (although this is also an issue sometimes stud-
ied under cluster tendency [32]). Simple examples to show
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Figure 6: Result with k-MEANS; (a) k =3 (b) k = 4.
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Figure 7: Histogram of z-values.

the problems of validity indexes can also be constructed for
other validity indexes of this type. Figure 4 (b) shows the
results by k-MEANS with k£ = 1, this places the unique cen-
ter at the center of mass for the data. Figure 6 (a) and
Figure 6 (b) shows the results of k-MEANS for £ = 3 and
k = 4, respectively. The values of L»(C)/nSep(C) are 0.072
for £ = 2, 0.060 for ¥ = 3 and 0.084 for ¥ = 4. A miss-
interpretation of validity indexes would indicate 3 clusters
in the data and the results of Figure 6 as “valid”. But we
know that the actual truth is 4 components and perhaps, to
the eye of some researchers, two clusters and noise.

No validity index is useful for all situations. Each validity
index is surrounded by assumptions about the nature of the
data and what the researcher is willing to accept as a null
hypothesis. Thus, there are as many validity indexes as in-
duction principles. However, optimizing directly the validity
index does not necessarily lead to valid (more accurate re-
sults). We illustrate this with a visual example. This time
the data will be one dimensional, but again, the situation
can only be worse with an increase in dimension. The one
dimensional data we use is the first coordinate of the data in
Figure 1. Figure 7 displays a histogram of this one dimen-
sional data set. The last two components are clearly visible
with their true centers at pu3 = —1.59, and ps = —8.11.
Now, consider applying k-MEANS with £ = 2 in this data set
(n = 10,000). The k-MEANS algorithm seeks the optimum
of Equation (2). That is, it look for two values cs and c4
such that L, is minimum. Figure 8 (a) displays the level
curves of the function La(cs, c4). If k-MEANS was fortunate
enough to actually find the optimum of L, it would find

SIGKDD Explorations.

Figure 8: (a) Optimum values of Ly (indicated with +) ver-
sus true values for the means of the clusters (indicated with
o). (b) Optimum values of La/(n Sep) (indicated with +)
versus true values for the means of the clusters (indicated
with o).

és = —0.05 and é = —8.75 (or é3 = —8.75 ¢4 = —0.05
because Lo is symmetric, that is La(c3,cs) = L2(ca,c3)).
These optima are marked with +. Note that this suggest
far more separation between the prototypes for the clusters
that there actually exists. This is usually referred in the
literature as “k-MEANS is statistically biased”. The point
we are trying to make is that it is not a problem of the
algorithm, but of the induction principle formalized in Ls.
Any algorithm for Equation 2, even one that could find the
optima of Ls would be biased for mixtures of normals.
Now, turning to the issue of validity. Suppose for a moment
that somebody presents the solution C' = {c3 = —13.1,¢4 =
4.83}. If we apply the validity index L2(C)/(nSep(C)) to
our data set, we would obtain a very small value because this
C' is the minimum. The preference for well separated repre-
sentatives for clusters drives the two values further apart.
Figure 8 (b) shows the level curves of this simple valid-
ity index. This misuse of the validity index could poten-
tially suggest that this person is presenting us with valid
results. How would people obtain such results? They could
use an optimization algorithm (perhaps quadratic or cubic)
to closely approximate the minimum of L2(C)/(nSep(C)).
Note that the same could be done for more sophisticated
validity indexes. They can all be evaluated by computer,
and although the minimization may be very computation-
ally expensive, close approximations to the minimum are
possible. So then the question is, how do we verify the va-
lidity of results supplied by others? Note that ‘others’ could
be an algorithm (machines), a person (people), or both. The
opinion here is that validity needs very careful analysis of
the nature of the data, the hypothesis one is prepared to
select as “no-structure” (random data) and the researchers
belief that there is some type of structure in the data. Thus,
even for validity, clusters are in the eye of the beholder and
there will also be many validity indexes.
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