Is Pushing Constraints Deeply into the Mining Algorithms
Really What We Want?

An Alternative Approach for Association Rule Mining

Jochen Hipp
DaimlerChrysler AG,
Research & Technology, Ulm, Germany

jochen.hipp@daimlerchrysler.com

ABSTRACT

The common approach to exploit mining constraints is to
push them deeply into the mining algorithms. In our paper
we argue that this approach is based on an understanding
of KDD that is no longer up-to-date. In fact, today KDD
is seen as a human centered, highly interactive and itera-
tive process. Blindly enforcing constraints already during
the mining runs neglects the process character of KDD and
therefore is no longer state of the art. Constraints can make
a single algorithm run faster but in fact we are still far from
response times that would allow true interactivity in KDD.
In addition we pay the price of repeated mining runs and
moreover risk reducing data mining to some kind of hypoth-
esis testing. Taking all the above into consideration we pro-
pose to do exactly the contrary of constrained mining: We
accept an initial (nearly) unconstrained and costly mining
run. But instead of a sequence of subsequent and still expen-
sive constrained mining runs we answer all further mining
queries from this initial result set. Whereas this is straight
forward for constraints that can be implemented as filters
on the result set, things get more complicated when we re-
strict the underlying mining data. Actually in practice such
constraints are very important, e.g. the generation of rules
for certain days of the week, for families, singles, male or
female customers etc. We show how to postpone such row-
restriction constraints on the transactions from rule gener-
ation to rule retrieval from the initial result set.

Keywords

Association Rules, KDD Process, Constrained Mining

1. INTRODUCTION

Since its introduction in 1993 [1] association rule mining has
become one of the fundamental analysis methods in knowl-
edge discovery in databases (KDD). In the following section
we briefly introduce the basic idea behind this popular min-
ing approach. Moreover we point out the implications of
understanding KDD as a nontrivial and interactive process
in the context of association rule mining. This finally leads
to a better understanding of constraints in association rule
mining.

SIGKDD Explorations.

Ulrich Guntzer
Wilhelm Schickard-Institute,
University of Tubingen, Germany

guentzer@informatik.uni-tuebingen.de

1.1 AssociationRules

Association rules model dependencies between items in trans-
actional data. Let Z = {z1,...,%,} be a set of distinct lit-
erals, called items. A set X C 7 with k = |X| is called
a k-itemset or simply an itemset. Let a database D be a
multi-set of subsets of Z. Each T' € D is called a transac-
tion.

A transaction T € D supports an itemset X CZ if X CT.
Let X,Y C Z be nonempty itemsets with X NY = @. Then
an association rule is an expression

X =Y,
with rule body X, rule head Y, and rule confidence
{T eD|XUY CT}
HTeD|XCT}H -

The confidence can be understood as the conditional proba-
bility P(Y|X). The fraction of transactions T supporting an
itemset X with respect to database D is called the support
of X,

conf(X =»Y) =

HTeD|XC T}

supp(X) = D]

An itemset reaching a predefined threshold for support is
called a frequent itemset. The support of a rule X — Y is
defined as

supp(X = Y) =supp(X UY).

In practice the support-confidence framework, as described
above, shows severe limitations. The reason is that asso-
ciation rules are based on correlations and even for large
confidence values do not necessarily imply causation. As a
consequence supplementary rule quality measures have been
developed over the years, e.g. lift (interest) [6; 15]:

conf(X = Y)
supp(Y")

The measure lift expresses the deviation of the rule confi-
dence from the a priori probability of ¥, supp(Y’). That is,
in how far does the rule body X “lift” the probability for
the rule head Y to occur in the same transaction. Alter-
natively conviction [6] expresses in how far X and ~Y are
stochastically independent:

lift(X > V) =

supp(X) - supp(~Y)
supp(X, 7Y)

conv(X »Y) =

Volume 4, Issue 1 - page 50

High values for conv(X — Y), up to oo for supp(X,-Y) =0,
express the conviction that X — Y represents a causation.
In order to restrict the otherwise enormous result set to-
day’s mining algorithms expect the analyst to give minimal
thresholds on rule quality measures, e.g. [2; 11; 13].
Association rules origin from basket analysis but easily are
transfered to a broad variety of applications from many dif-
ferent domains.

1.2 The KDD Process

One of the most important and influential insights in KDD
research is the understanding of KDD as a process, as e.g.
Fayyad et al. formulate in [8]:

KDD is the nontrivial process of identifying valid,
novel, potentially useful, and ultimately under-
standable patterns in data.

There are several different more or less concrete process
models, e.g. [5; 8; 20], but the key message is always the
same: data mining, that is applying a sophisticated mining
algorithm to a dataset, is just one out of several steps in a
KDD project. Moreover typically the KDD process steps are
not passed in any prescribed order. The analyst decides “

the fly” wether to proceed to the next step, to redo the cur-
rent step or even to return to one of the previous tasks. In
Figure 1 the most important dependencies between the com-
mon mining steps are indicated by arrows. The cycle around

———»
Business

Data
Understandln 8)e—o Understandlng

Data
Preparation
Deployment

Modeling

—
-~

Figure 1: The steps (phases) of the CRISP-Data Mining
process.

the process indicates its overall cyclic character. Obviously
such a human centered and interactive process highly de-
pends on the analyst’s skills and creativity. So adequately
supporting the analyst is one of the keys to successful ap-
plication of KDD techniques.

Unfortunately the response times of today’s highly opti-
mized association mining algorithms still range from min-
utes to hours, depending on the dataset and the employed
minimal thresholds for the rule quality measures, e.g. [13].

SIGKDD Explorations.

A rerun of the mining algorithm is often required for in-
vestigating even speculative ideas. Yet if every simple and
speculative idea implies to be idle for a few minutes, then
analysts will — at least in the long run — brake themselves in
advance instead of trying out diligently whatever pops into
their minds.

Generally speaking, we cannot expect to reach a smooth in-
tegration of the mining algorithms into the interactive KDD
process. In other words, in practice often creativity and
inspiration of the analysts are smothered by the annoying
inefficiencies of the underlying algorithms.

1.3 Constraints in AssociationRule Mining

Constraints aim at reducing the mining result. In its sim-
plest form constraints are filtering thresholds on the rule
quality measures support and confidence. More elaborated
constraints formulate conditions on the presence or absence
of certain items in head and/or body. In general constraints
help preventing the analysts from drowning in large result
sets. By specifying constraints on the result set an ana-
lyst can deliberately focus his search on what he is really
interested in. In the context of result sets easily reaching
thousands or ten thousands of association rules, constraints
are a powerful and hardly replaceable means in the analyst’s
hands.

Furthermore it became clear that pushing constraints deeply
into the actual mining run is a way to tackle the perfor-
mance problem of association rule mining algorithms. If the
analyst is able to specify what he is interested in then run
times can be drastically reduced. At first glance exploiting
constraints during the mining run seems to be a promising
approach in order to get closer to the ideal of a truly interac-
tive KDD process. As a consequence a variety of algorithms
have been developed by research that employ constraints for
performance improvement, e.g. [18; 19]. Although obviously
there is a significant effect on performance when pushing
constraints deeply into the mining procedure, we propose to
do exactly the contrary [14], for reasons we will see shortly.

2. POSTPONING CONSTRAINTS FROM
MINING TO EVALUATION

In this section we explain why we generally favor postponing
constraints instead of pushing them into the mining proce-
dure. After this motivation we come to the main contribu-
tion of our paper: we show how to do this for the practically
very important case of constraining the rows of the min-
ing data, a case where postponing constraints implies much
more than simply filtering an existing result set.

2.1 Why Postponing Constraints?

KDD is more than examining some concrete hypothesis. Es-
pecially association rules as an unsupervised mining method
aim at finding novel knowledge from the data. Pushing con-
straints on the result already from the very beginning means
narrowing the result set and therefore is somehow contrary
to this goal. So on the one hand constraints can help cut-
ting an otherwise overwhelming search space to manageable
pieces. But on the other hand we should always have in
mind that constraints also involve the danger of reducing
data mining to pure hypothesis investigation.

With this background it is clear that especially during the
initial iterations of a KDD process constraints should always

Volume 4, Issue 1 - page 51

be used with caution. In the beginning of a KDD project
typically there will be a general search phase before the an-
alyst begins to focus on specifics. So we mainly benefit from
the performance improvements of constraints in the second
half but cannot count on them during the initial orientation
phases. In addition even when pushing rather strict con-
straints into the mining process we only get performance
improvements but especially on really large databases we
are still far from gaining true interactivity.

So why not accepting one initial mining run without apply-
ing any constraints in order to mine “all potentially inter-
esting rules”? [14] Of course this initial run will take its time
but as this is expected it should not be a severe problem, e.g.
we might run it over night. Presuming that the generated
rule set is broad enough, running the mining algorithm is a
costly but unique event. The result is a rule set that will
serve for both, the initial orientation phases and the phases
where the analyst focuses on specifics.

In the latter phases instead of pushing them into the mining
we simply apply the constraints to the result set. That is
to say, we postpone the constraints from mining to rule set
evaluation. Applying the constraints then typically means
filtering the generated rules.

The benefit of the initial costly mining run is true interactiv-
ity throughout the whole subsequent KDD process. In [14]
we suggest storing the result set in an appropriate rule cache.
In all following mining iterations this cache is efficiently ac-
cessed through an evolved mining language, e.g. [10; 14; 16;
17]. Especially for large data sets selecting (“filtering”) ap-
propriate rules from this cache is always unbeatably much
faster than generating a constraint rule set from the mining
data itself.

2.2 PostponeRow-Restriction Constraints

Row-restriction constraints restrict the mining data to cer-
tain subsets. In practice such constraints are among the
most important constraints in association rule mining. Typ-
ical applications from basket analysis are the generation of
rules for certain days of the week, e.g. rules for only those
customer transactions collected on Saturdays. Or the re-
striction of the transactions is based on customer informa-
tion, e.g. rules for families, singles, male or female customers
etc. Examples from other domains like manufacturing are
production year, model type etc.

Pushing such a row-restriction constraint into the mining
run is trivial: we simply run the mining algorithm on the
selected subset. Unfortunately postponing such a constraint
to rule retrieval from an existing rule set is not straight
forward. It no longer suffices to simply filter the rules but
we need to adapt the values of the rule quality measures
adequately. In the following we show how to do this for the
most common rule quality measures.

2.2.1 Basicldea

We presume that all information employed for restricting
the mining data were already stored as items in the trans-
actions when the initial mining run took place. Such items
can be seen as pseudo items in the sense that they are not
“contained” in a transaction but describe the transaction
as a whole. For instance the family status of a customer
or information on gender can be added as an item to each
transaction. The same holds for day of the week etc.

Let the database D' be a subset of D with D’ being restricted

SIGKDD Explorations.

to only those transactions from D that contain a certain
itemset R. Then the support of an itemset A in the database
D’ can be derived from the support values in D as follows:
D]
|D'|

suppp/(A) = suppp (AU R) -

The transactions in D’ that contain A are those transactions
from D that contain A and R. In other words, the support
of A in the constrained database D' is the support of A ex-
tended with R in the unconstrained database D, multiplied
by factor |D|/|D|'. So if we want to derive the support of A
in D’ we depend on knowing the support of AUR in D. This
implies that A U R must be frequent in D in order to de-
rive suppp,(A) (in association rule mining only the support
values of frequent itemsets are known).

At first glance this might look like a severe restriction. For-
tunately it turns out to be only a minor problem in practical
applications. It simply implies that the subset D’ to which
we restrict D must be a reasonable portion of D. For typ-
ical row-restriction constraints, e.g. gender, family status
or day of the week, normally this is always the case. For
instance presuming approximately the same number of cus-
tomer transactions each day, lowering the minimal support
for D by factor < 1/7 is a practical guess for constraining
the result set to different days of the week.

Another important point is that we store rules not frequent
itemsets. To derive the support of an itemset A in D’ there
must be at least one corresponding rule being generated
from D that reaches all minimal thresholds for the rule qual-
ity measures. Whereas we saw that frequency is only a minor
problem we suggest to restrict the rule set only by moderate
values for minimal confidence, e.g. 75% proved to be a good
choice in our experiments. Furthermore during the initial
mining run we recommend no minimal thresholds at all for
the supplementary rule quality measures.

2.2.2 Common Rule Quality Measures

Based on the support it is straight forward to postpone row-
restriction constraints from mining to rule retrieval from a
cache. In the following we show how to do this for the most
relevant rule quality measures (Again D' is the transaction
set obtained when constraining D by itemset R):

Support

suppp: (A — B) = suppp/ (AU B)
D]
1|

= suppp(AUBUR) -

Confidence

suppp (AU B)
suppp (A)

suppp (AU BUR)
suppp (AU R)

confpr (A — B) =

Lift
supppr (AU B)
suppp (A) - suppp: (B)
suppp(AUBUR) e
suppp (AU R) - suppp(BUR) |D|

liftp (A — B) =

Volume 4, Issue 1 - page 52

Conviction
suppp (4) - suppp (—B)
suppp: (A, —B)
suppp (A) - (1 — suppp(B))
suppp (A) — suppp: (AU B)
suppp(AUR) - (1 —suppp(BUR) - %)
suppp (AU R) — suppp(AUBUR)

3. EVALUATION

In the following section we evaluate an implementation of
our approach on a mining scenario from supermarket basket
analysis.

convp (A — B) =

3.1 Algorithm and Dataset

For our evaluation we employed a C++-implementation of
the popular Apriori-algorithm [2]. The experiments were
run on a Pentium IIT Linux machine clocked at 500 Mhz.
The data is from a supermarket and consists of 77, 588 cus-
tomer transactions that were collected over a period of one
month. The transactions contain items out of an assort-
ment of 19,535 different articles plus the day of the week
as pseudo item. The data resided in IBM’s DB2 relational
database system. Data access was implemented as described
in [12].

3.2 Scenario

For our evaluation we chose a typical scenario. An ana-
lyst investigates the above customer data in a KDD pro-
cess. He starts with a general exploration phase and his
early “blurred” insights serve as starting points for further
investigation. In our supermarket scenario the day of the
week stored with each transaction obviously is worth a de-
liberate analysis. The question is, in how far the behavior
of customers on the different days of the week differs. For
instance people make supply purchases before the weekend
but typically not in the beginning of the week. In addition
different people — families, singles, business people, house-
wives etc — may favor different days of the week for their
purchases.

Normally an analyst will start with mining the whole dataset.

Then, on demand, he will select subsets of the data for each
day of the week and rerun the mining algorithm on these
datasets. Depending on the size of the data each of these
reruns will interrupt his work for several minutes upto hours.
By postponing the row-restriction constraints as described
in this paper the analyst gets around the repeated mining
runs. After an initial mining run (at lowered minimal thresh-
olds for the rule quality measures) restricting the rows of the
datasets may take less than a second.

3.3 Experimentsand Results

In our experiments we made two mining runs over the com-
plete database. One at minimum support of 0.1%, the other
at 0.7% (minimum confidence was always set to 75%). To
the rule set generated at 0.1% we apply our postponed row-
restriction constraints. That is to say, without rerunning
the mining algorithm we get those rules with adjusted qual-
ity measures that would have been generated if we had re-
stricted the datasets in advance. We do this for each day
of the week (except Sunday because our shop was closed on
Sundays).

SIGKDD Explorations.

In order to compare the results we selected the appropriate
data subsets for each day of the week and made separate
mining runs at minimal support of 0.7% = (6+1) X 0.1% on
them. We divided the minimal support by seven (six days
of the week plus one as safety interval) to compensate the
chance of missing rules when postponing constraints com-
pared to true mining on the restricted subsets, c.f. Section 2.
Finally for each day of the week the rule set generated by
postponing constraints was equal to or even slightly larger
than the rule set generated by a separate mining run, at
minimum support 0.7% of course. So mining with post-
poned row-restriction constraints did not miss any rules.
The number of rules generated for each day differed between
approximately 50 and 90 rules.

The benefit of our approach becomes clear when looking at
the performance result in Figure 2. Of course postponed

time
Constrained Mining ~
Postponed Constraints 72

17sec 15sec

1lsec

N N
\ \ S
1sec 1sec § 1sec

12sec 13sec
S N
l= ll=

N

C’\O/In;ﬁltﬁ Monday Tuesday Wednesday — Thursday Friday Saturday

Figure 2: Performance results on supermarket transactions
(including the time for database access).

constraints require an initial mining run where none of the
constraints is applied (in our experiment the run at the left
that takes 122sec on the complete month). Whereas rerun-
ning the algorithm for each of the days always implies an
interruption of the analyst, in our experiments the time for
applying row constraints to an existing result set is about a
second and can be neglected for each of the restrictions.
This performance gap becomes even larger when mining
larger datasets. In brief, mining the data of a complete year
will take about 12 times longer than this single month. But
we experienced that presuming the number of items remains
the same, the number of rules also stays nearly constant.
Consequently pushing row-restriction constraints into the
mining run — selecting subsets of the mining data — scales
linearly with the number of rows. In contrast typically the
time for restricting a rule set as described in this paper can
be neglected and more important is practically independent
of the actual size of the database.

4. DISCUSSION

In this paper we argue in favor of an approach that to some
extend stands in contradiction to today’s common opinion.
Therefore we think it is worth to spent some more time on
discussing the pros and cons of our approach in order to face
the most important counter-arguments.

'In contrast to [14] we store the rules directly in main mem-
ory instead of a relational database system.

Volume 4, Issue 1 - page 53

4.1 Doeslt Really Make Senseto Drastically
Lower Minimum Support?

Typically the support of a rule is understood as one of the
rule quality measures. So at a certain level further lowering
the minimum support threshold should not make sense any-
more because the quality (significance) of such low support
rules is not acceptable. In some domains such rarely appli-
cable rules may not be actionable. For example it probably
does not make sense to decide upon special advertisements
based on items bought only by a very small fraction of su-
permarket customers. In contrast in the medical domain the
death or severe illness of a patient may also be quite rare
but obviously is nevertheless of interest, c.f. [7].

In general we think support as a rule quality measure is
commonly overestimated. In brief, we see support as an un-
avoidable means to make the complexity of the association
mining problem manageable for current algorithms. Even
rules at very low support may be interesting. For example
item a and item b may occur rather infrequently in the data.
So the support of rule a — b is also quite low. Nevertheless
if such a rule with reasonable confidence exists this rule will
be of interest because the implied co-occurrence in the same
transactions of two such infrequent items is probably not by
accident. Further examples can be found in [7].

4.2 Is The Initial Mining Run Feasible?

Obviously the initial mining is the critical part of our argu-
mentation. On the one hand the benefit of the single un-
constrained mining run cannot be stressed enough: we gain
interactivity for the following phases of the KDD process, as
we think an obligatory prerequisite for efficiently support-
ing the ‘human in the loop’. On the other hand we must
admit that the price to pay for the unconstrained mining
seems to be quite high, easily reaching hours or even days of
computation. The question arising is whether our approach
is still appealing in practice or not. From our point of view
it undoubtedly is. Running the mining algorithm e.g. over
night is nearly always an option. During rule generation the
machine does not rely on any human interaction. So letting
the machine stupidly counting frequencies in the data actu-
ally does not bind any human resources. That is to say, the
price to pay is not as high as it seems at first sight. More-
over when considering the ‘real problems’ occurring during
a mining project such a break quickly looses its importance.
This opinion is also supported by other researchers. For ex-
ample DuMouchel and Pregibon in [7] say they deliberately
did not focus on algorithmic issues in their research and con-
sider the computing time negligible compared to the analysis
time. In the same direction Goethals and Van den Bussche
argument in [9] when introducing their interactive mining
approach.

4.3 Can Constraints Always Be Avoided?

Of course in our scenario we presume that the mining al-
gorithm still terminates in reasonable time, e.g. overnight.
But runtime of the algorithms is exponential in minimum
support and moreover highly depends on the characteristics
of the underlying data, e.g. [13]. Whereas we did not experi-
ence severe problems in classical association mining domains
like market basket analysis — even at quite low thresholds for
minimum support — things are different for so called dense
databases, c.f [3; 4]. Here the number of frequent itemsets
may be infeasible high already at comparably high levels

SIGKDD Explorations.

of minimum support. So situations may occur where even
quite strict constraints become essential.

Such a strict constraint is the exact specification of the rule
head before running the algorithm as proposed in [3]. At
first glance this restriction looks quite drastic but based on
it Bayardo and Agrawal are able to broaden the class of rules
identified by their algorithm [3]: the precise interestingness
measures can be adjusted during post-processing instead of
a priori. So to some extend they anticipate our postponed
constraints approach.

The general idea for such dense or otherwise problematic
databases is to push as few constraints as possible into the
mining. We want the algorithm to return in reasonable time
but we do not want to carelessly restrict the initial rule set
that is the basis of our further explorations.

A problem in this context is that currently there is no possi-
bility to estimate the runtime of the algorithms in advance.
So how to decide upon the constraints to enable reasonable
run times? At the moment we do not have an answer to
this question. What we actually suggest is quite pragmatic
but helpful in practice: we start several mining runs on dif-
ferent machines with different constraints and thresholds on
the rule quality measures. The idea is that at least some
of these mining runs return in reasonable time. Then out
of the terminated runs the one with the weakest constraints
serves as basis for our explorations.

5. SUMMARY

In this paper we introduced the reader to association rule
mining with postponed row-restriction constraints. We mo-
tivated our approach by discussing the basics of association
rule mining and constraints in the context of an interactive
KDD process. The common approach to employ constraints
is to push them deeply into the mining run. This can make
algorithm runs faster but in fact we are still far from a truly
interactive KDD process.

The idea of postponing constraints is to do exactly the con-
trary. A single and possibly expensive mining run is ac-
cepted but all subsequent mining questions are supposed
to be satisfied from the initial result set. Whereas this is
straight forward as long as postponing constraints means
simply filtering the initial rule set, things get problematic
as soon as constraints operate as select statements on the
underlying mining data.

Such row-restriction constraints restrict the mining data to
well defined subsets. Typical applications from basket anal-
ysis are the generation of rules for certain days of the week,
e.g. generate rules for only those customer transactions col-
lected on Saturdays. Or the restriction of the transactions
based on customer information, e.g. rules for families, sin-
gles, male or female customers etc. Examples from other do-
mains like manufacturing are production year, model type
etc. In practice such constraints are among the most impor-
tant constraints in association rule mining.

One of the topics of our paper was to show how to post-
pone such row-restriction constraints on the transactions
from rule generation to rule retrieval from the initial re-
sult set. In fact, we showed that without actually rerunning
the algorithm, we are able to efficiently construct those rules
from the initial result set that would have been generated if
the mining algorithm were run on only a subset of the trans-
actions. In our experiments we demonstrated that the time

Volume 4, Issue 1 - page 54

needed for applying postponed row-restriction constraints
to rule sets — at least in our scenario — is about a second
and can be neglected. Furthermore the response time is
even independent from the number of rows of the underlying
database. The latter is an important advantage compared
to rerunning constrained mining algorithms that still scale
linearly with the number of rows.

Summing up, we introduced the reader to approaching true
interactivity in KDD by postponing row-restriction cons-
traints from the mining run to rule set evaluation. We dis-
cussed the pros and cons and finally admitted that pushing
constraints into the algorithms is not always avoidable. But
if constraints have to be used they bear the danger of reduc-
ing data mining to hypothesis testing. Consequently as few
as possible constraints should be exploited already during
the mining run.

So is pushing constraints deeply into the mining algorithms
really what we want? No, for sure not, but unfortunately
sometimes when its algorithmically impossible to completely
postpone all constraints we cannot life without constraint-
based mining.

6. REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases. In
Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (ACM SIGMOD ’93),
pages 207-216, Washington, USA, May 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for min-
ing association rules. In Proceedings of the 20th Inter-
national Conference on Very Large Databases (VLDB
’94), Santiago, Chile, June 1994.

[3] R. Bayardo and R. Agrawal. Mining the most inter-
esting rules. In Proceedings of the 5th International
Conference on Knowledge Discovery and Data Mining
(KDD ’99), pages 145-154, San Diego, California, USA,
August 1999.

[4] R. J. Bayardo, R. Agrawal, and D. Gunopulos.
Constraint-based rule mining in large, dense databases.
In Proceedings of the 15th International Conference on
Data Engineering, Sydney, Australia, March 1999.

[6] R. J. Brachman and T. Anand. The process of
knowledge discovery in databases: A human centered
approach. In U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, editors, Advances in
Knowledge Discovery and Data Mining, chapter 2,
pages 37-57. AAAI/MIT Press, 1996.

[6] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur.
Dynamic itemset counting and implication rules for
market basket data. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data (ACM SIGMOD ’97), pages 265-276, 1997.

[7] W. DuMouchel and D. Pregibon. Empirical bayes
screening for multi-item associations. In Proceedings
of The Seventh ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD-
2001), pages 67-76, San Francisco, CA, USA, August
26-29 2001.

SIGKDD Explorations.

[8] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The
KDD process for extracting useful knowledge from vol-
umes of data. Communications of the ACM, 39(11):27—
34, November 1996.

[9] B. Goethals and J. V. den Bussche. A priori versus a
posteriori filtering of association rules. In Proceedings of
the 1999 ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery (DMKD ’99,
Philadelphia, USA, May 30 1999.

[10] J. Han, Y. Fu, W. Wang, K. Koperski, and O. Za-
iane. DMQL: A data mining query language for re-
lational databases. In Proceedings of the 1996 SIG-
MOD’96 Workshop on Research Issues on Data Min-
ing and Knowledge Discovery (DMKD ’96), Montreal,
Canada, June 1996.

[11] J. Han, J. Pei, and Y. Yin. Mining frequent pat-
terns without candidate generation. In Proceedings of
the 2000 ACM-SIGMOD International Conference on
Management of Data, Dallas, Texas, USA, May 2000.

[12] J. Hipp, U. Giintzer, and U. Grimmer. Integrating asso-
ciation rule mining algorithms with relational database
systems. In Proceedings of the 8rd International Confer-
ence on Enterprise Information Systems (ICEILS 2001),
pages 130-137, Setibal, Portugal, July 7-10 2001.

[13] J. Hipp, U. Giintzer, and G. Nakhaeizadeh. Algorithms
for association rule mining — a general survey and com-
parison. SIGKDD Ezplorations, 2(1):58-64, July 2000.

[14] J. Hipp, C. Mangold, U. Giintzer, and
G. Nakhaeizadeh. Efficient rule retrieval and post-
poned restrict operations for association rule mining.
In Proceedings of the 6th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD’02),
pages 5265, Taipei, Taiwan, May 6-8 2002.

[15] IBM. Intelligent Miner Handbook, 1999.

[16] T. Imielinski, A. Virmani, and A. Abdulghani. DMajor
- application programming interface for database min-
ing. Data Mining and Knowledge Discovery, 3(4):347—
372, December 1999.

[17] R. Meo, G. Psaila, and S. Ceri. A new sql-like op-
erator for mining association rules. In Proceedings
of the 22nd International Conference on Very Large
Databases (VLDB ’96), Mumbai (Bombay), India,
September 1996.

[18] R. Ng, L. S. Lakshmanan, J. Han, and T. Mah. Ex-
ploratory mining via constrained frequent set queries.
In Proceedings of the 1999 ACM-SIGMOD Interna-
tional Conference on Management of Data (SIGMOD
’99), pages 556-558, Philadelphia, PA, USA, June 1999.

[19] R. Srikant, Q. Vu, and R. Agrawal. Mining associa-
tion rules with item constraints. In Proceedings of the
3rd International Conference on KDD and Data Mining
(KDD °97), Newport Beach, California, August 1997.

[20] R. Wirth and J. Hipp. CRISP-DM: Towards a standard
process modell for data mining. In Proceedings of the
4th International Conference on the Practical Applica-
tions of Knowledge Discovery and Data Mining, pages
29-39, Manchester, UK, April 2000.

Volume 4, Issue 1 - page 55

