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ABSTRACT

Since its introduction, frequent-set mining has been general-
ized to many forms, which include constrained data mining.
The use of constraints permits user focus and guidance, en-
ables user exploration and control, and leads to effective
pruning of the search space and efficient mining of frequent
itemsets. In this paper, we focus on the use of succinct
constraints. In particular, we propose a novel algorithm
called FPS to mine frequent itemsets satisfying succinct con-
straints. The FPS algorithm avoids the generate-and-test
paradigm by exploiting succinctness properties of the con-
straints in a FP-tree based framework. In terms of func-
tionality, our algorithm is capable of handling not just the
succinct aggregate constraint, but any succinct constraint in
general. Moreover, it handles multiple succinct constraints.
In terms of performance, our algorithm is more efficient and
effective than existing FP-tree based constrained frequent-
set mining algorithms.
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1. INTRODUCTION

Since its introduction [1], the problem of mining associa-
tion rules, and the more general problem of finding frequent
sets, from large databases has been the subject of numerous
studies. These studies can be broadly divided into two “gen-
erations”. In the first generation, all studies focused either
on performance and efficiency issues (e.g., Apriori frame-
work [2; 3], partitioning [15]), or on extending the initial
notion of association rules to more general rules (e.g., min-
ing long patterns [4], quantitative and multi-dimensional
rules [7; 13], correlations and causal structures [6; 18]).
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Studies in this generation basically considered the data min-
ing exercise in isolation.

Studies in the second generation explored how data mining
can best interact with other key components in the broader
picture of knowledge discovery and data mining. One key
component is the database management system (DBMS),
and some studies (e.g., the integration of association rule
mining with relational DBMS [17], query flocks [20]) have
explored how association rule mining can handshake with
the DBMS most effectively. Another component, which is
arguably even more important when it comes to knowledge
discovery, is the human user. Studies of this kind allow
users to specify the patterns to be mined according to their
intention via the use of constraints. The algorithms devel-
oped exploit properties of these user-specified constraints,
and provide support for user guidance and focus. Hence,
the computation is more efficient and effective, and is lim-
ited to what interests the users.

To handle constraints in the process of mining frequent sets
from large databases, many different approaches have been
proposed over the past few years. The following are some
examples. Srikant et al. [19] considered item constraints in
association rule mining. Bayardo et al. [5] developed Dense-
Miner to mine association rules with the user-specified con-
sequent meeting “interestingness” constraints (e.g., mini-
mum support, minimum confidence, minimum improvement).
Garofalakis et al. [8] developed SPIRIT to mine frequent se-
quential patterns satisfying regular expression constraints.
Ng et al. [14; 11] proposed a constrained frequent-set min-
ing framework within which the user can use a rich set
of constraints — including SQL-style aggregate constraints
(e.g., Q1,Q2 in Figure 1) and non-aggregate constraints
(e.g., Q3,Q7,Qs,Q9) — to guide the mining process to find
only those rules satisfying the constraints. In Figure 1, the
constraint @1 = min(S.Qty) > 500 says that the minimum
Qty value of all items in the set S is at least 500. The con-
straint Q3 = S.Type O {snack, soda} says that the set S
includes some items whose T'ype is snack and some items
whose Type is soda; the constraint Q7 = S.Price = 25
says that all items in the set S are of Price equals 25.
Ng et al. also developed the CAP algorithm in the con-
strained frequent-set mining framework mentioned above.
Such an Apriori-based algorithm exploits properties of anti-
monotone and/or succinct constraints to give as much prun-
ing as possible. Constraints such as @1, ..., Q9 in Figure 1
are succinct, because one can directly generate precisely
all and only those itemsets satisfying the constraints (e.g.,
by using a member generating function [14], which does
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Auxiliary information about items:

(Gtem [ a [ b | ¢ [ d ] e[ 73]
Qty 600 200 300 | 500 | 700 | 400 | 100
Price || 40 10 25 30 20 35 15
Type || beer | snack | soda | beer | beer | beer | beer
Q1: min(S.Qty) > 500

Q2 : maz(S.Price) > 30

Qs :  S.Type D {snack, soda}

Q4 : min(S.Qty) > 500 A maz(S.Price) > 30

Qs : max(S.Price) > 30 V S.Type D {snack, soda}

Qe : min(S.Qty) > 500 V [maz(S.Price) 2 30 A S.Type D {snack, soda}]
Q7: S.Price=25

Qs :  S.Type C {beer, snack}

Qo : soda € S.Type

Q10 : maz(S.Price)/avg(S.Price) <7

Figure 1: Examples of Various Classes of Constraints

not require generation and testing of itemsets not satisfy-
ing the constraints). For instance, itemsets satisfying the
constraint Q2 = maz(S.Price) > 30 can be precisely gen-
erated by combining at least one item whose Price > 30
with some possible optional items (whose Prices are unim-
portant), thereby avoiding the substantial overhead of the
generate-and-test paradigm. Among the above succinct con-
straints, @1 = min(S.Qty) > 500 is also anti-monotone,
because any superset of an itemset violating the constraint
(i.e., containing an item whose Qty < 500) also violates
the constraint. Grahne et al. [9] also exploited the anti-
monotone and/or succinct constraints, but they mined valid
correlated itemsets.

Like many Apriori-based algorithms, CAP mines frequent
sets by generating candidates and checking their frequen-
cies/support counts against the transaction database. To
improve performance and efficiency of the mining process,
Han et al. [10] proposed a FP-tree based framework. Specif-
ically, the FP-growth algorithm in this framework constructs
an extended prefix-tree structure, called FP-tree, to com-
press the original transaction database. Rather than em-
ploying the generate-and-test strategy of Apriori-based al-
gorithms, it focuses on frequent pattern growth which is a
restricted test-only approach (i.e., only test for frequency).
Pei et al. [16] integrated such a FP-tree based mining frame-
work with constraint pushing. They developed several FP-
tree based algorithms such as FZC* and FZCM mainly
to handle the so-called convertible constraints (e.g., Q1o
in Figure 1). Since a special class of succinct constraints
— namely succinct aggregate constraints — is convertible,
their algorithms handle this class of constraints indirectly
by first “converting” the constraints into anti-monotone or
monotone ones.

Although the FZC algorithms avoid the generate-and-test
(of frequent itemsets), they still require lots of testing for
frequency and for constraint satisfaction, even when dealing
with succinct constraints. In other words, the algorithms fail
to exploit a nice property of succinct constraints: Given a
succinct constraint C, one can efficiently enumerate all and
only those itemsets that are guaranteed to satisfy C, thereby
avoiding the substantial overhead of the generate-and-test
paradigm (for frequent itemests satisfying C'). Moreover,
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the FZC algorithms rely on a strong assumption that a to-
tal order exists over the set of items, i.e., mining can be done
only by ordering items properly. Such an assumption does
not hold in many situations. More importantly, the FZC al-
gorithms cannot handle the “superset” constraint, i.e. a suc-
cinct constraint of the form S.A D CS (e.g., Q3 = S.T'ype D
{snack, soda} in Figure 1), because there does not exist a
total order for such a constraint. Furthermore, multiple suc-
cinct constraints having different or conflicting item ordering
(e.g., Q1 A Q2 = min(S.Qty) > 500 A maxz(S.Price) > 30,
which have one ordering for Qty and another one for Price)
cannot be handled effectively. Hence, a natural question to
ask is: Based on the FP-tree framework, can we do bet-
ter when we are dealing with succinct constraints? Can the
pruning be done once-and-for-all? Can multiple succinct
constraints be handled effectively?

The contribution of this work is to study how exploiting
properties of succinct constraints can help frequent-set min-
ing. More precisely, we develop a FP-tree based algorithm,
called FPS, for FP-tree based mining of Succinct con-
straints. The algorithm pushes the succinct constraints
deep inside the mining process, and thus leads to more ef-
fective pruning than the existing algorithms like FZC. Fig-
ure 2 summarizes the salient functionalities of our proposed
algorithm FPS as compared with the most relevant ones.
More specifically, our technical contributions in this paper
are as follows:

o Functionality: Our proposed algorithm FPS is capable
of handling any succinct constraint including succinct
non-aggregate constraints, “superset” constraints, and
multiple succinct constraints. Note from Figure 2 that
in terms of classes of constraints handled, CAP [14]
looks similar to FPS. However, in terms of perfor-
mance, CAP is different from FPS, as explained below.

e Performance: Although the succinct aggregate con-
straint can be handled by CAP, FZC, and FPS (see
Figure 2), the experimental results in Section 4 show
that our proposed algorithm FPS is more efficient than
CAP and FZC. Reasons for the performance gain in
FPS are that: (i) FPS is a FP-tree based algorithm,
which avoids candidate generation, whereas the CAP
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Figure 2: Our Proposed FPS Algorithm vs. the Most Relevant Algorithms

algorithm is an Apriori-based algorithm, which relies
on candidate generation; and (ii) FPS exploits the suc-
cinctness properties of the constraint and handles the
succinct constraint directly, whereas the FZIC algo-
rithms incur overhead by doing so indirectly via the
conversion of the succinct constraint into a convertible
one.

The paper is organized as follows. In the next section, rel-
evant background material is described. Section 3 presents
an overview of our proposed algorithm FPS. Section 4 shows
the experimental results. Finally, conclusions are presented
in Section 5.

2. BACKGROUND

In this section, we first give definitions to various classes of
(“rule” / “semantic”) constraints. Then, we give an overview
of FIC* and FICM [16], which are FP-tree based mining
algorithms for handling convertible constraints.

2.1 Constraints

There are several classes of “rule”/“semantic” constraints,
which include: (i) succinct constraints, (ii) anti-monotone
constraints, (iii) monotone constraints, and (iv) convertible
constraints. Note that these classes overlap. For example,
the constraint Q1 = min(S.Qty) > 500 in Figure 1 is suc-
cinct, anti-monotone, and convertible.

DEFINITION 1 (SUCCINCTNESS [14]). Define
SATc(Item) to be the set of itemsets that satisfy the con-
straint C. With respect to the lattice space consisting of all
itemsets, SATc (Item) represents the pruned space consisting
of those itemsets satisfying C. We use the notation 2! to
mean the powerset of I.

(a) An itemset I C Item is a succinct set if it can be
expressed as op(Item) for some selection predicate p,
where o s the selection operator.

(b) SP C 2™"™ 45 q succinct powerset if there is a fized
number of succinct sets Items,...,Item; C Item such
that SP can be expressed in terms of the powersets of
Item,...,Item; using union and minus.

(c) A constraint C is succinct provided that SATc(Item)
s a succinct powerset. [

Consider the constraint @3 = S.T'ype O {snack, soda}. Its
pruned space consists of all those itemsets that contain at
least one snack item and at least one soda item. Let Items,
Itemy and Items respectively be the sets orype=snack (Item),
GType:soda(Item) and OType#snack A Type;ésoda(Item)- Then,
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Item; contains all the snack items, Items contains all the
soda items, and Items contains neither a snack item nor
a soda item. And, Qs is succinct because its pruned
space SATQ,(Item) can be expressed as:

zltam _ 2Item1 _ 2Item2 _ 2Item1 UItemz 2Item2UItem3 .

Although sATq, (Item) is a complicated expression involving
several unions and minuses, itemsets satisfying the succinct
constraint Q3 can be directly generate precisely (i.e., without
generating and then excluding those itemset not satisfying
Q3). More specifically, every itemset v satisfying Q3 can be
efficiently enumerated by combining: (i) a (snack) item from
Item;, (ii) a (soda) item from Itemy, and (iii) some possible

optional items from any of Item;, Itemy and Items.

DEFINITION 2  (CONVERTIBILITY [16]). A constraint C
s convertible if and only if C is convertible anti-monotone
or C is convertible monotone. A constraint C is convertible
anti-monotone provided there is an order R on items such
that when an ordered itemset S satisfies the constraint C, so
does any prefic of S. A constraint C is convertible mono-
tone provided there is an order R' on items such that when
an ordered itemset S wviolates the constraint C, so does any
prefiz of S. O

In addition to the above two classes of “rule” /“semantic”
constraints, others include anti-monotone constraints and
monotone constraints. A constraint C is anti-monotone[14]
if and only if any superset of an itemset violating C also vi-
olates C; a constraint C’ is monotone [16] if and only if
any superset of an itemset satisfying C' also satisfies C'.
For example, constraints Q1 = min(S.Qty) > 500, Q2 =
maxz(S.Price) > 30, and Q3 = S.Type DO {snack, soda} in
Figure 1 are succinct. And, Qs = Q1 V (-Q2 A @3) is also
succinct. Among them, the succinct constraint Qi is also
anti-monotone (and thus convertible anti-monotone), and
the succinct constraint )2 is also convertible monotone. In
addition to constraints (1 and @2, the constraint Q10 =
maz(S.Price)/avg(S.Price) < 7 is another example of con-
vertible constraints. For characterization of succinct and of
anti-monotone constraints, refer to the works of Ng et al. [14];
for characterization of monotone and of convertible con-
straints, refer to the works of Pei et al. [16].

As one can observe from the above examples, succinct con-
straints can be of various forms. In general, succinct con-
straints can be further categorized into 3 subclasses:

1. SAM constraints, i.e. succinct anti-monotone con-
straints, such as Q1 = min(S.Qty) > 500, Q7 =
S.Price = 25, Qs = S.Type C {beer, snack} in Fig-
ure 1;
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2. SUC constraints, i.e. succinct non-anti-monotone
constraints of a form not equivalent to S.A D CS
(where C'S is a constant set for the attribute A of
the set S), such as Q2 = max(S.Price) > 30, Q9 =
soda € S.T'ype; and

3. “superset” constraints, i.e. succinct non-anti-mono-
tone constraints of a form equivalent to S.A D CS,
such as Q3 = S.T'ype D {snack, soda}.

2.2 FP-treeBasedAlgorithms

In the previous section, we have seen the definitions of vari-
ous classes of (“rule” /“semantics”) constraints. In this sec-
tion, we turn our attention to the two existing FP-tree based
constrained mining algorithms [16]: FZC* for handling con-
vertible anti-monotone constraints and FZCM for handling
convertible monotone constraints.

2.2.1 FP-treeBasedAlgorithmfor Corvertible Anti-
monotoneConstrints: Fzc*

Like many FP-tree based algorithms, FZC* [16] consists
of two main operations: (i) construction of FP-tree and
(ii) growth of frequent patterns. The FP-tree is an extended
prefix-tree structure to capture the content of transaction
database. Frequent patterns are formed by first finding the
singleton itemsets that are frequent (and valid — i.e. sat-
isfying the constraint — for the constrained mining), and
then recursively growing them. The entire mining process
can be viewed as a divide-and-conquer approach of decom-
posing both the mining task and the transaction database
according to the frequent patterns obtained so far. This
leads to a focused search of smaller datasets.

While details of the FZC# algorithm can be found in the
works of Pei et al. [16], we use the following example to
highlight some major steps in the execution run of the algo-
rithm.

Ezample 1. Consider the following transaction database 7

| Transactions in 7 [ Contents |
t1 {a,b,c,d}
2 {b,d, f}
ts {a,b,d,e}
t4 {a’ b’ c, e, g}
t5 {C, €, g}

with the auxiliary information about items as shown in Fig-
ure 1:

[dtem || @ | b | ¢ [ d [ e | f [ g |
Qty 600 200 300 | 500 | 700 | 400 | 100
Price || 40 10 25 30 20 35 15
Type || beer | snack | soda | beer | beer | beer | beer

Let constraint C' be the SAM constraint Q1 = min(S.Qty) >
500 in Figure 1, and the minimum support threshold be 2
(i.e., 40%). Then, the FZC* algorithm “converts” C into
a convertible anti-monotone constraint and mines valid fre-
quent itemsets as follows. It first scans the database to
check frequency/support count of each singleton itemset.
As a result, it removes the infrequent itemset {f}. It ob-
tains frequent singleton itemsets {e}, {a}, {d}, {c}, {b} and
{g}, which are sorted according to a prefix function order R
such that all supersets of an itemset S having S as prefix
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violate the constraint C' whenever S violates C. These fre-
quent singleton itemsets are then checked for constraint sat-
isfaction. Only frequent itemsets {e}, {a} and {d} are valid.
The algorithm then scans the database again to construct a
FP-tree. More precisely, for each database transaction, only
frequent items — which follow the sorting order imposed by
R — are kept in the tree. Afterwards, for each valid fre-
quent itemset S, the algorithm forms a projected database
(i-e., a collection of transactions having S as prefix). The
above mining process is then applied recursively to each of
the {e}-, {a}- and {d}-projected databases.

Note from the above execution run, items that are known to
be invalid from the initial constraint checking (e.g, items ¢,
b and g) are not removed, and they are kept in the ini-
tial FP-tree (i.e., the FP-tree for built for the transaction
database 7) as well as FP-trees built for subsequent pro-
jected databases. Moreover, the constraint is checked not
only at the initial step (i.e., when mining valid frequent sin-
gleton itemsets from the initial FP-tree), but also at all re-
cursive steps (i.e., when mining valid frequent itemsets from
FP-trees built for subsequent projected databases). []

2.2.2 FP-treeBasedAlgorithmfor Corvertible Mono-
toneConstrints: Fzc™

In the previous section, we have reviewed how the FZC#
algorithm handles a convertible anti-monotone constraint.
In this section, we turn our attention to how the FZC™
algorithm handles a convertible monotone constraint. The
skeleton of the FZC™ algorithm [16] is quite similar to that
of the FZC* algorithm except the following in the FZCM
algorithm:

e Frequent items are sorted according to a different pre-
fix function order R’ such that all supersets of an item-
set S having S as prefix satisfy the convertible mono-
tone constraint C' whenever S satisfies C.

e Projected databases are formed not only for valid fre-
quent itemsets, but also for invalid frequent itemsets.

e The constraint is checked at some but not necessar-
ily all recursive steps. This is because once a frequent
itemset S satisfies the constraint C, every subsequent
frequent itemset derived from the corresponding pro-
jected database (at subsequent recursive steps) has S
as prefix, and thus satisfies C' too.

For lack of space, we do not show further details. We leave
as an exercise for the reader to apply the FZC™ algorithm
to the same database/setting as in Example 1 for mining
valid frequent itemsets satisfying the SUC constraint Q2 =
max(S.Price) > 30 in Figure 1. The reader may notice
from the execution run that: (i) transactions that does
not contain any item satisfying the constraint (e.g, trans-
action ts, which contains no item whose Price > 30) are
not removed, and they are kept in the initial FP-tree as
well as FP-trees built for subsequent projected databases;
(ii) projected databases are formed for all frequent item-
sets, regardless of their constraint satisfiability; and (iii) the
constraint is checked not only at the initial step (i.e., when
mining valid frequent singleton itemsets from the initial FP-
tree built for the transaction database 7'), but also at many
recursive steps (i.e., when mining valid frequent itemsets
from FP-trees built for subsequent projected databases).
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Algorithm FPSam

INPUT: A transaction database, a SAM constraint C, and a minimum support threshold.
OUTPUT: All valid frequent itemsets (i.e., itemsets that are frequent and satisfying C).
1. Generate all valid singleton itemsets (i.e., singleton itemsets satisfying C).
2. Build a FP-tree, which excludes all invalid items (i.e., excludes items not generated in Step 1).
3. Apply the usual FP-tree based mining algorithm (e.g., FP-growth) to the FP-tree built in Step 2.

Figure 3: Skeleton of the FPSam Algorithm

3. EXPLOITING SUCCINCT CONSTRAINTS

Recall from Section 2.1 that there are 3 subclasses of suc-
cinct constraints, namely SAM, SUC, and “superset” con-
straints. In this section, we show how we can exploit each
of these 3 subclasses of succinct constraints directly to help
mining valid frequent itemsets. Specifically, we develop an
algorithm called FPS, for FP-tree based mining of Suc-
cinct constraints. The algorithm consists of two main
components: One for handling succinct anti-monotone con-
straints (FPSam in Section 3.1), and another for handling
succinct non-anti-monotone constraints (FPSuc in Sections
3.2 and 3.3).

3.1 FPSamfor Handling SuccinctAnti-mono-
tone Constraints

Recall from Section 2.2.1, the FZC* algorithm handles a
special class of SAM constraints — SAM aggregate con-
straint — by treating it as a convertible anti-monotone one.
By so doing, the algorithm suffers from several problems/
weaknesses.

Problem 1 — Redundant items kept in FP-trees. At
the initial step of the FZC# algorithm, the only pruning is
the removal of infrequent items. Even though all frequent
items are checked for constraint satisfaction, all valid and in-
valid frequent items are kept in the initial FP-tree, and thus
in its projected databases and their corresponding FP-trees.
But, do we need to keep the invalid items? The answer is no,
because any frequent itemset v satisfying a SAM constraint
(whether aggregate or otherwise) is composed of only valid
items (i.e., items satisfying the constraint individually):

v C set of valid items (1)

In other words, all invalid items do not contribute to the
final answer set of valid frequent itemsets, thereby can be
removed without penalty.

Problem 2 — TUnnecessary constraint checking at
recursive steps/projected databases. For a convertible
anti-monotone constraint C, if {z;} satisfies C but {z;} vio-
lates C, then it is possible but not necessary that {z;}U{z;}
satisfies C, for some item x; ordered after item z; with re-
spect to a prefix function order R over the set of items.
Hence, the FZC* algorithm requires constraint checking at
every recursive step/projected database. However, due to
succinctness, if {z;} violates a SAM constraint C’, then any
superset of {z;} also violates C’'. So, the constraint check-
ing on {z;} U {z;} becomes unnecessary once {z;} has been
identified as invalid.

Solution: Our FPSam algorithm keeps only valid items
in the initial FP-tree, i.e. excludes all invalid items. As
FP-trees and projected databases formed subsequently at
recursive steps depend on the initial FP-tree, such a reduc-
tion in the size of the initial tree has a positive effect in
reducing sizes of all FP-trees built for subsequent projected
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FP-tree for Trans. DB
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| FP—tree for {e}-proj. DB | | FP-tree for {d}-proj. DB|

‘ a2 a2

=> {e,a} =>{d,a}

Figure 4: FPSam Mines Frequent Itemsets Satisfying the
SAM Constraint Q1

databases. It also leads to reduction in computation and
space at recursive steps. Moreover, because of succinctness,
all frequent itemsets satisfying a SAM constraint can be
formed by solely using the valid items (i.e., the only items
kept in the trees). Hence, our FPSam algorithm just needs
to generate all valid items at the initial step, i.e. prun-
ing for constraint satisfaction can be done once-and-for-all,
thereby avoiding all unnecessary constraint checking at re-
cursive steps/projected databases. Figure 3 shows the skele-
ton of the FPSam algorithm. The example below shows an
execution run of the algorithm.

Ezample 2. With the same database/setting and the same
SAM constraint Q1 = min(S.Qty) > 500 as in Example 1,
the FPSam algorithm mines valid frequent itemsets as fol-
lows. It first generates all valid itemsets; it removes all infre-
quent items (e.g., item f) and excludes all invalid items (e.g.,
items b, c and g), because these removed/excluded itemsets
do not contribute to the final answer set of valid frequent
itemsets. Then, FPSam builds a FP-tree containing only
valid items (i.e., items a,d and e) as shown in Figure 4.
(The frequency/support count of each item is shown in the
Figure, e.g., “a:3” in the initial tree indicates that the fre-
quency of {a} is 3.) The usual FP-tree based mining process
(with only frequency check) can be applied to the tree. More
specifically, the algorithm forms an {e}-projected database
and finds that the itemset {e, a} is frequent (and thus valid).
Similarly, the algorithm forms a {d}-projected database and
finds that the itemset {d,a} is frequent. Hence, FP-
Sam finds all valid frequent itemsets {a}, {d}, {e}, {d, a} and
{e,a}.

Note that no constraint checking is required at recursive
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Algorithm FPSuc

INPUT: A transaction database, a SUC constraint C, and a minimum support threshold.
OUTPUT: All valid frequent itemsets (i.e., itemsets that are frequent and satisfying C).
1. Generate items that belong to the mandatory group (i.e., items satisfying C) and those that belong to the optional group
(i.e., items not satisfying C); and partition the items into the appropriate groups.

w N

. For each transaction, put mandatory items before optional items.
. Build a FP-tree, which excludes redundant/“non-contributing” transactions.

4. For each valid frequent singleton itemset (i.e., itemset containing a mandatory item), form a projected database, to which
the usual FP-tree based mining algorithm (e.g., FP-growth) is applied.

Figure 5: Skeleton of the FPSuc Algorithm

steps/projected databases. Moreover, the FPSam algorithm
does not rely on any prefix function order. Hence, items
can be arranged consistently in the FP-trees according to
any item-ordering scheme (e.g., arrange items in decreasing
frequency order, which helps reduce the tree size). [

3.2 FPSuc for Handling Succinct Non-anti-
monotoneSUC Constraints

Recall from Section 2.2.2, the FZCM algorithm handles a
special class of SUC constraints — SUC aggregate constraint
— by treating it as a convertible monotone one. By so do-
ing, the algorithm suffers from several problems/weaknesses,
which are similar but not identical to those of the FIC*
algorithm. Before we discuss these problems and our solu-
tion, let us understand the key difference between the item-
sets satisfying a SUC constraint to those satisfying a SAM
constraint: Any frequent itemset v satisfying a SUC con-
straint (whether aggregate or otherwise) is composed of one
or more mandatory items (i.e., items satisfying the con-
straint) and some optional items (i.e., items not satisfying
the constraint):

v={z}Uy (2)
where

z € set of mandatory items, and

v C (set of mandatory items U set of optional items).

Recall from the previous section that the main contribu-
tion of FPSam is to set up an appropriate initial FP-tree
so that the remaining mining process can be performed as
usual using a FP-tree based mining algorithm (e.g., FP-
growth). Such a contribution was achieved by: (i) exclud-
ing all those items that do not contribute to the final an-
swer set of valid frequent itemsets, and (ii) exploiting suc-
cinctness so as to avoid unnecessary constraint checking at
recursive steps/projected databases. Below, we discuss the
problems/weaknesses of the FZC™ algorithm and show how
we solve these problems in a similar fashion as we did for
the SAM constraints.

Problem 1 — Redundant transactions kept in FP-
trees. Although all frequent items are checked for con-
straint satisfaction at the initial step of the FZC™ algo-
rithm, all transactions — including those containing no man-
datory items — are kept in the initial FP-tree, and thus in
its projected databases and their corresponding FP-trees.
But, we do not need to keep all transactions, because any
frequent itemset v satisfying a SUC constraint must con-
tain a mandatory item. In other words, any transaction
not containing a mandatory item does not contribute to the
final answer set of valid frequent itemsets, thereby can be
removed without penalty.
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Problem 2 — Excessive formation of projected data-
bases & unnecessary constraint checking at recursive
steps/projected databases. For a convertible monotone
constraint C, if {z;} violates C, then it is possible but not
necessary that {z;} U {z;} satisfies C, for some item z; or-
dered after item x; with respect to a prefix function order R’
over the set of items. Hence, the FZCM algorithm: (i) needs
to form a projected database for every frequent itemset
regardless of its constraint satisfiability, and (ii) requires
constraint checking at recursive steps/projected databases.
But, if we arrange the items in such a way that manda-
tory items come before optional items, then {z;} violates a
SUC constraint C' implies that z; is an optional item and
any item z; ordered after item z; is also optional. Thus,
{zi}U{z;} also violates C’. So, forming projected databases
on {z;} does not lead to the finding of valid frequent item-
sets, thereby can be skipped without penalty. Moreover,
the constraint checking on {z;}U{z;} becomes unnecessary
once {z;} has been identified as optional.

Solution: Our FPSuc algorithm excludes all transactions
containing no mandatory items (i.e., excludes all redundant/
“non-contributing” transactions), and keeps only those con-
taining at least one mandatory item. Such a reduction in the
size of the initial FP-tree leads to: (i) reduction in sizes of
all FP-trees built for subsequent projected databases, and
thus saving in computation and space at recursive steps;
and (ii) more “accurate” support counts (see Example 3),
because items in those transactions that are not contribut-
ing to the final answer set are no longer counted. More-
over, instead of sorting items according to the prefix func-
tion order R’, the FPSuc algorithm partitions items into two
groups, namely “mandatory group” and “optional group”.
The algorithm puts items from the mandatory group be-
fore any item from the optional group. (In other words,
mandatory items appear below optional items in the FP-
tree.) Then, all frequent itemsets satisfying a SUC con-
straint must be “extensions” of an item from the mandatory
group, i.e. all valid frequent itemsets must be grown from an
item in the mandatory group. Hence, due to succinctness,
our FPSuc algorithm just needs to:

(i) form projected databases only for valid frequent item-
sets; and

(ii) generate all mandatory and all optional items at the
initial step, i.e. pruning for constraint satisfaction can
be done once-and-for-all, thereby avoiding all unnec-
essary constraint checking at recursive steps/projected
databases.

Figure 5 shows the skeleton of the FPSuc algorithm. The
example below shows an execution run of the algorithm.
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Figure 6: FPSuc Mines Frequent Itemsets Satisfying the
SUC Constraint Q2

Ezample 3. With the same database/setting as in Exam-
ple 1 and the SUC constraint Q2 = maxz(S.Price) > 30 as
discussed in Section 2.2.2, the FPSuc algorithm mines valid
frequent itemsets as follows. It first generates and parti-
tions items into 2 groups: (i) the mandatory group contain-
ing items a,d and f; and (ii) the optional group containing
items b, ¢, e and g. Note that the item f is infrequent and is
thus removed. The algorithm also removes transaction ts,
because it contains no mandatory item; such a removal leads
to effective pruning and a more “accurate” support count.
Specifically, the support count of item g is decremented to 1,
which reflects its “accurate” frequency/support count in the
set of non-redundant / “contributing” transactions. Since the
item g is no longer frequent (i.e., not contributing to the fi-
nal answer set of valid frequent itemesets), keeping it around
is a waste of computation and space, and hence it is pruned.
Then, FPSuc builds a FP-tree as shown in Figure 6. In
the Figure, the dashed line indicates the boundary between
mandatory and optional items in the initial FP-tree (i.e.,
the FP-tree built for transaction database). Here, manda-
tory items appear below optional items. Within each of the
mandatory and the optional groups, items can be arranged
consistently according to any item-ordering scheme. Note
that for a SUC constraint, the boundary only exists in the
initial FP-tree but not in any FP-tree built for subsequent
projected databases. The reason is that once a projected
database is formed for each valid frequent singleton itemset
(e.g., {a},{d}), there is no distinction between mandatory
and optional items. In other words, once a mandatory item x
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is found for a valid itemset v, any other item in v can be
chosen from mandatory or from optional groups (refer to
Equation (2)). This explains why once FPSuc forms the
{a}- and {d}-projected databases, the usual FP-tree based
mining process (with only frequency check) can be applied
recursively to these projected databases.

Let us complete the execution run. FPSuc finds frequent
(and thus valid) itemsets {d,a},{d,b} and {d,a,b} from
the {d}-projected database; it finds frequent itemsets {a, b},
{a,c} and {a,e} from the {a}-projected database. As the
mining process is applied recursively on this {a}-projected
database, {a,c}- and {a, e}-projected databases are formed,
and (valid) frequent itemsets {a, ¢,b} and {a, e, b} are found.
Hence, all valid frequent itemsets {a}, {d}, {a,b}, {a,c},
{a,e},{d,a},{d, b}, {a,c,b},{a,e,b} and {d, a,b} are found.
Note that: (i) projected databases are formed only for valid
frequent singleton itemsets; and (ii) no constraint checking
is required at recursive steps/projected databases. [J

3.3 FPSucfor Handling SupersetConstraints

So far, we have shown how our proposed algorithms FPSam
and FPSuc handle SAM constraints and SUC constraints
respectively. Here, we turn our attention to the “superset”
constraint, i.e. a succinct non-anti-monotone constraint of
the form S.A D CS. Below, we discuss why the existing
FICM algorithm [16] cannot handle the superset constraint.
Problem — Reliance on total order over a set of
items. Recall that both the FZC* and the FZCM algo-
rithms rely on a strong assumption about the existence of
a total order over a set of items. The algorithms can only
exploit a constraint by ordering items properly. Since there
does not exist a total order for the superset relation, the
existing FZCM algorithm fails to handle the superset con-
straint. Given that our proposed FPSuc algorithm does not
rely on the total order, can we handle the superset con-
straint? The answer is yes, because in our framework, the
key difference between a superset constraint and a SUC
constraint is the number of mandatory groups. More pre-
cisely, any frequent itemset v satisfying a superset constraint
S.A D {esi1,-..,cs1} is composed of at least one item from
each mandatory group and some optional items (i.e., items
that do not belong to any mandatory group):

v={z1,...,z1} Uy (3)
where

x; € mandatory group, and

1
s ((U mandatory groupi) U optional group) )

i=1

Solution: To handle the superset constraint (or any suc-
cinct constraint having multiple mandatory groups), we gen-
eralize our proposed FPSuc algorithm by making the follow-
ing modifications:

e Instead of partitioning items into two groups, the FP-
Suc algorithm is modified to partition items into (I +
1) groups, namely “mandatory groupi”, ..., “manda-
tory group;” and “optional group”, where [ is the num-
ber of mandatory groups/items in each valid item-
set v. For example, for the constraint Q3 = S.Type D
{snack, soda} in Figure 1, the algorithm partitions
items into 3 groups: (i) mandatory group: containing
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items whose T'ype is snack (e.g., item b in Example 1),
(ii) mandatory group: containing items whose T'ype is
soda (e.g., item c), and (iii) optional group contain-
ing items whose T'ype is neither snack nor soda (e.g.,
items a,d, e, f and g).

e Regarding the removal of redundant/“non-contribut-
ing” transactions, the FPSuc algorithm is modified to
remove transactions not containing an item from each
mandatory group. For example, for the constraint Qs
above, any transaction not containing both a snack
item and a soda item (e.g., transactions t2,t3 and ts
in Example 1) can be removed.

o The key difference between the original FPSuc and this
modified version is at recursive steps. For a SUC con-
straint, once the initial FP-tree is built and projected
databases are formed for mandatory items, the usual
FP-tree based mining algorithm can be applied. How-
ever, with the superset constraint (having ! mandatory
groups), the modified FPSuc algorithm needs to ensure
that an {z1,zs,...,z;}-projected database is formed
only for each item z; in mandatory group;. More
specifically, the modified FPSuc algorithm forms an
{z1}-projected database for each item z; in manda-
tory group; at the initial step. In each {z}-projected
database, items are rearranged so that those from man-
datory groups come before those from the other groups;
the algorithm then forms an {z1, z»}-projected data-
base for each item z» in mandatory group,. Similar
approach is carried out until the algorithm forms an
{z1, 2, ...,z }-projected database (for each item z; in
mandatory group;), to which the usual FP-tree based
algorithm (e.g., FP-growth) can be applied afterwards.
For example, with the same database/setting as in Ex-
ample 1 and the constraint ()3 above, the FPSuc algo-
rithm first forms a {b}-projected database. Then, the
algorithm forms a {b, c}-projected database, to which
the usual FP-tree based mining algorithm like FP-
growth is applied. Hence, the modified FPSuc finds
all valid frequent itemsets {b, c} and {b,c,a}.

3.4 Handling Multiple SuccinctConstraints

Clearly, an algorithm for processing a constrained frequent-
set query needs to deal with multiple constraints specified
in the query. This raises the question of how to handle mul-
tiple succinct constraints. Below, we explain why the FZC
algorithms cannot handle multiple constraints effectively.

Problem — Reliance on a proper item ordering. Re-
call that when using the FZC algorithms, constraints can
be exploited only by ordering items properly. However,
different constraints may require different and even con-
flicting item ordering. So to handle multiple succinct con-
straints, the best the FZC algorithms can do is to conduct a
cost analysis in determining how to combine multiple order-
consistent convertible constraints and how to select the most
selective constraint among the order-conflicting ones. In
many real-life situations, it is not unusual to get constraints
having conflicting item ordering. For example, for con-
straints @1 AQ2 = min(S.Qty) > 500 A maz(S.Price) > 30
in Figure 1, one item ordering exists for S.Qty and a con-
flicting one for S.Price. In this situation, the best the FZC
algorithms can do is to pick the most selective constraint,
ignore another constraint during the mining process, and
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perform a post-processing step to check the mined itemsets
against the previously ignored constraint.

Solution: Our proposed algorithm FPS can exploit simul-
taneously all of the constraints in the multiple succinct con-
straints, because any Boolean combination of succinct con-
straints is also succinct [12]. For example, for constraints
Q1 A Q2 = min(S.Qty) > 500 A max(S.Price) > 30, any
itemset v satisfying Q1 A Q2 is composed of: (i) at least
one mandatory item (i.e., item whose Qty > 500 and whose
Price > 30), and (ii) some optional items whose Qty > 500.
When applying Q1 A Q2 to the same database/setting as
in Example 1, valid frequent itemsets {a}, {d}, {a,d} and
{a, e} can be found. The reason is that any itemset v sat-
isfying Q1 A Q2 is composed of: (i) at least one of items a
and d, and (ii) possibly the optional item e (cf. Examples 2
and 3).

4. EXPERIMENT AL RESULTS

The experimental results cited below are based on a trans-
action database of 100k records with an average transac-
tion length of 10 items, and a domain of 1000 items. The
database was generated by the program developed at IBM
Almaden Research Center [3]. (Additional databases, in-
cluding connect-4 and mushroom from UC Irvine Machine
Learning Depository, were used in the experiments. The
results produced are consistent with those using the IBM
database. So, for lack of space, we only show below the re-
sults using the IBM database.) Unless otherwise specified,
we used a minimum support threshold of 0.01%. All experi-
ments were run in a time-sharing environment in a 700 MHz
machine. The reported figures are based on the average of
multiple runs. In the experiment, we mainly compared two
sets of algorithms that were implemented in C: (i) FZC™ vs.
FPSam, and (ii) FZC™ vs. FPSuc.

The y-axis of Figure 7 shows the runtime of the algorithms,
and the x-axis shows the selectivity of the succinct con-
straint. A constraint with p% selectivity means p% of items
are selected. It is observed from Figure 7(a) that as the se-
lectivity of the SAM constraint decreases (i.e., fewer items
are selected), the runtimes of both FZC* and FPSam de-
crease. But in terms of speedup, it is more beneficial to
use FPSam than FZC*, especially when the constraint has
a lower selectivity. It is observed from Figure 7(b) that as
the selectivity of the SUC constraint decreases, the runtime
of FPSuc decreases but that of FZC* increases. Again, in
terms of speedup, it is more beneficial to use FPSuc than
FICM, especially when the constraint has a lower selectiv-
ity. A reason for the gain in performance, when compared
FPS with FZC, is that the FPS algorithm exploits succinct-
ness property.

As shown in Figure 8(a), our FPS algorithm requires much
smaller number of constraint checking than its counterparts
in FZC. The reason is that our algorithm does not require
constraint checking at recursive steps/projected databases.
In contrast, the FZC algorithms perform lots of unneces-
sary constraint checking at recursive steps. Moreover, it
is interesting to note that as the selectivity of the succinct
constraint decreases (i.e., fewer items are selected), three
different trends were observed as follows:

e For FPS, the number of constraint checking is con-
stant, because no constraint checking is required at
recursive steps/projected databases. In other words,
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pruning for constraint satisfaction is done once-and-
for-all.

e For FIC*, the number decreases, because FZC* only
forms projected databases for valid itemsets. So, the
lower the selectivity of the constraint, the smaller is
the number of valid itemsets.

e For FZC™, the number increases, because FZC™M re-
quires constraint checking on those projected databases
that have not yet contained a mandatory item. So, the
lower the selectivity of the constraint, the smaller is
the number of mandatory items, and thus the larger is
the number of projected databases not yet containing
a mandatory item.

Figure 8(b) shows the size of the initial FP-tree (i.e., the FP-
tree built for the transaction database at the initial step).
As observed, our FPS algorithm builds a much smaller tree
than its counterparts in FZC. The reasons are that: (i) in
FPSam, only valid items are kept in the tree, whereas FICA
keeps all invalid frequent items (which are redundant) in ad-
dition to all valid frequent items in the tree; (ii) in FPSuc,
only transactions that are contributing to the final answer
set are kept in the tree, whereas FZC™ keeps all transac-
tions (including redundant ones) in the tree. Moreover, it is
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Number of Constraint Checking
Selec- || SAM Constraint SUC Constraint
tivity || FPSam | FZC* | FPSuc | FIC™
20% 7,451 14,907 7,451 | 138,897
40% 7,451 36,061 7,451 | 72,475
60% 7,451 77,575 7,451 | 34,047
80% || 7,451 | 146,519 || 7,451 | 14,223

(a) Number of Constraint Checking

Number of Nodes in the FP-tree
Selec- || SAM Constraint SUC Constraint
tivity | FPSam | FZIC”* | FPSuc | FIC™

20% 83,453 | 806,421 || 721,644 | 805,840
40% || 246,353 | 806,421 || 789,495 | 805,840
60% || 420,562 | 806,421 || 797,532 | 805,840
80% || 610,686 | 806,421 || 800,883 | 805,840

(b) Number of Nodes in the Initial FP-tree

No. of “Counters” for “Support Count” Ops
Selec- SAM Constraint SUC Constraint
tivity]| FPSam | FIC” FPSuc [ FIc™
20% || 121,994 | 1,044,372 || 1,098,185 | 3,023,243
40% || 478,828 | 1,888,048 || 1,942,773 | 3,023,243
60% || 1,054,499 | 2,490,335 || 2,509,923 | 3,023,243
80% || 1,912,846 | 2,890,201 || 2,857,370 | 3,023,243

(c) No. of “Counters” for “Support Counts” Operations

Figure 8: Effectiveness of Exploiting Succinct Constraints

observed that the sizes of the initial trees for the FZC algo-
rithms are constant, regardless of the constraint selectivity.
This is an indication that the FZC algorithms do not exploit
the succinct constraint to reduce the tree size (and to save
computation and space). In contrast, the tree sizes for our
proposed algorithm FPS decrease when the selectivity of the
constraint decreases (i.e., when more items are pruned).
Figure 8(c) shows the total number of “counters” required
for “support count” operations. This number depends on
the total number and the sizes of FP-trees: The smaller the
number and the sizes of the trees, the smaller is the number
of “counters”. It explains why the numbers of “counters” for
FPSam, FZC*, and FPSuc decrease when the selectivity of
the constraint decreases (i.e., when fewer items are selected).
Among FPSam and FZC*, the former requires much fewer
“counters” because it effectively reduces the number and the
sizes of the trees. Moreover, it is interesting to note that
FICM requires the same number of “counters”, regardless
of the constraint selectivity. The reason is that the algo-
rithm forms projected databases for all frequent itemsets,
regardless of their constraint satisfiability. Many of these
projected databases do not lead to the finding of valid fre-
quent itemsets!

When the minimum support threshold increases, the run-
time decreases, and so are the size of FP-tree, the number of
constraint checking and the number of “counters” for “sup-
port count” operations.

We have also tested scalability with the number of transac-
tions. The results show that our proposed algorithm FPS
has a linear scalability.

Last but not the least, we have experimented with multiple
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Number of Runtime (in seconds)

Constraints || FPSam | FZIC* | CAP
1 14.7s 26.4s | 2192.5s
2 6.0s 27.0s 12.8s
3 4.0s 27.1s 5.5s

Figure 9: Effectiveness of Exploiting Multiple Succinct Con-
straints

succinct constraints. Figure 9 shows the result when multi-
ple independent constraints, each with 40% selectivity, were
used. Notice that our proposed algorithm FPSam is more
efficient than its FZC counterpart, because our algorithm
FPSam exploits all of the constraints in the multiple suc-
cinct constraints, whereas FZC* exploits only one of them
(i-e., generating itemsets satisfying the most selective suc-
cinct constraint, testing them against all other constraints,
and excluding those not satisfying any of the multiple con-
straints). When compared FZC with CAP [14], CAP out-
performs FZC in some situations. The reason is that the
CAP algorithm, like FPS, also exploits multiple succinct
constraints. Moreover, our proposed algorithm FPSam, as
expected, is more efficient than CAP, because our algorithm
FPSam is FP-tree based (which avoids candidate genera-
tion), whereas CAP is Apriori-based (which relies on candi-
date generation).

5. CONCLUSIONS

A key contribution of this paper is to optimize the perfor-
mance of, and to increase functionality of, FP-tree based
constrained mining algorithms. To this end, we proposed
and studied the novel algorithm of FPS. The algorithm han-
dles succinct constraints directly and exploits succinctness
properties, so that the constraints are pushed deep inside the
mining process, leading to effective pruning. Moreover, the
algorithm does not make any unrealistic assumption about
the existence of total order over the set of items. It handles
multiple succinct constraints (whether aggregate or other-
wise) very efficiently and effectively.

In ongoing work, we are interested in exploring improve-
ments to the FPS algorithm. For example, we are inter-
ested in investigating the handling of changes in succinct
constraints. Along this direction, an interesting question to
explore is how to handle succinct constraints efficiently and
effectively when the FP-tree does not fit in memory.
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