Disco very in Multi-Attrib ute Data with User-defined
Constraints

Chang-Shing Perng Haixun Wang Sheng Ma Joseph L. Hellerstein
{perng,haixun,shengma,hellersy@us.ibm.com
IBM Thomas J. Watson Research Center
Hawthorne, NY 10532

ABSTRACT

There has been a growing interest in mining frequent item-
sets in relational data with multiple attributes. A key step
in this approach is to select a set of attributes that group
data into transactions and a separate set of attributes that
labels data into items. Unsupervised and unrestricted min-
ing, however, is stymied by the combinatorial complexity
and the quantity of patterns as the number of attributes
grows. In this paper, we focus on leveraging the semantics
of the underlying data for mining frequent itemsets. For
instance, there are usually taxonomies in the data schema
and functional dependencies among the attributes. Domain
knowledge and user preferences often have the potential to
significantly reduce the exponentially growing mining space.
These observations motivate the design of a user-directed
data mining framework that allows such domain knowledge
to guide the mining process and control the mining strategy.
We show examples of tremendous reduction in computation
by using domain knowledge in mining relational data with
multiple attributes.

Keywords

domain knowledge,frequent itemset, association rule, multi-
attribute

1. INTRODUCTION

Mining for frequent itemsets has been studied extensively
because of the potential for actionable insights. Typically,
before mining is done, a preprocessing step uses data at-
tributes to group records into transactions and to define the
items used in mining. For example in supermarket data, the
MarketBasket attribute might be used to group data into
transactions and the ProductType attribute (with values
such as domestic beer) to specify items. We refer to this
as fixed attribute mining in that mining does not change
which attributes are used to determine transactions and
items. Unfortunately, fixed attribute mining imposes severe
limitations on the patterns that can be discovered in that the
analyst must specify in advance the attributes used to des-
ignate items (e.g., Imported/Domestic and Product Class)
and how to group them for the purposes of pattern dis-
covery (e.g., Transaction or CustomerName + TimeOfDay).
To this end, a framework for mining multi-attribute data,
FARM][13], proposes an approach to mining multi-attribute

SIGKDD Explorations.

data in which itemizing and grouping attributes are selected
in the course of the mining operation itself. While this
greatly expands the range of patterns that can be discov-
ered, it also creates another level of combinatorial complex-
ity. This paper proposes a framework for specifying con-
straints on the itemizing and grouping attributes. Not only
does this reduce computational complexity, it can also result
in patterns of more interest to the analyst.

We have observed that fixing the attributes used to define
transactions and items can severely constrain the patterns
that are discovered. For example, by having items charac-
terized in terms of product type, we may fail to discover
relationships between baby items in general (e.g., diapers,
formula, rattles) and adult beverages (e.g., beer and wine).
And, by having transactions be market baskets, we may fail
to note relationships between items purchased by the same
family in a single day.

To go beyond the limits of fixed attribute mining, multiple-
attribute mining applies the notion of mining spaces to
discover frequent patterns for transactions and items that
are defined in terms of data attributes. A transaction is a
general term for a group of records. This approach does not
require pre-specified taxonomies, although it exploits such
information if it is available. Further, because of various
downward closure properties, multiple-attribute mining is
considerably faster than simply employing apriori-like algo-
rithms on each choice of attributes for defining transactions
and items.

To illustrate the foregoing and to better motivate the prob-
lem we address, consider the domain of event management
of complex networks. Events are messages that are gener-
ated when special conditions arise. The relationship between
events often provides actionable insights into the cause of
current network problems as well as advanced warnings of
future problem occurrences. Figure 1 illustrates a portion of
event data we obtained from a production network at a large
financial institution. We initially focus on the attributes
Date, Time, Intrvl5 (five minute interval), EventType, Host
from which the event originated, and Severity. The column
labeled Rec is only present to aid in making references to the
data. The full data set evidenced the following patterns:

1. Host netsvr38 generated a large number of IntrfcDwn
events on 8/21. Such situations may indicate a prob-
lem with that host.

2. When host netsvr22 generates an IntrfcDwn event,
host router16 generates a CiscolnkUp (failure recov-
ery) event within the same five minute interval. Thus,

Volume 4, Issue 1 - page 56

Rec Date Time AM / PM Intrvl5 Intrvi30 EventType Host Site Source Subsource Severity = Maint
(1) 8/21 2:12:23 AM 2:10 2:00 TcpCls prtsvr3 haw infoprint prtdaemon harmless No
(2) 8/21 2:13:41 AM 2:10 2:00 IntrfcDwn netsvr38 ykt netagt catb-agt severe No
(3) 8/21 2:14:11 AM 2:10 2:00 IntrfcDwn netsvr22 haw netagt cdl-agt severe No
(4) 8/21 2:14:37 AM 2:10 2:00 IntrfcDwn netsvrb haw netagt ibm-agt severe No
(5) 8/21 2:15:02 AM 2:15 2:00 IntrfcDwn netsevr24 haw netagt ibm-agt severe No
(6) 8/21 2:16:09 AM 2:15 2:00 CiscoLnkUp routerl6 haw cisco-agt cat5-agt severe Yes
(7) 8/21 2:38:48 AM 2:35 2:30 NetMgrUp netviewl6 ykt netview ibm-nev harmless No
(8) 8/21 2:48:23 AM 2:45 2:30 RtrLnkUp routerl6 haw cisco-agt cat5-agt harmless No
(9) 8/21 3:13:12 AM 3:10 3:00 IntrfcDwn netsrv45 ykt netagt tvl-agt severe No

Figure 1: Distributed System Management Events

an IntrfcDwn on netsvr22 may provide a way to an-
ticipate the failure of routeri16.

3. The event types MLMStatusUp and CiscoDCDLnkUp tend
to be generated from same host and within the same
minute. This means that when a Cisco router recovers
a link, it will discover that its mid-level manager is
accessible. Such event pairs should be filtered since
they arise from normal operation.

4. Hosts netsvr38 and netsvrb tend to generate events
with same severity in the same day. This suggests a
close linkage between these hosts. If this linkage is
unexpected, it should be investigated to avoid having
problems with one host cause problems with the other
host.

Several definitions of transactions and items are needed to
discover patterns (1)-(4). For (2), transactions are deter-
mined by groupings events into five minute intervals (at-
tribute Intrvl5). For (1) and (4), event groupings are done
by Date attribute. For (3), a transaction reflects events that
occur on the same host within the same minute. The defini-
tion of items is similarly diverse. For (1) and (4), an item is
a Host. For (3), it is an EventType. For (2), it is determined
by the values of Host and EventType.

While FARM discovers a more complete set of patterns,
it creates challenges as well. First, analysts may be over-
whelmed by dealing with the abundance of patterns discov-
ered. Second, even though the FARM approach exploits
downward closure properties to provide computational ef-
ficiencies, the time required for pattern discovery can be
substantial. For example, we show later in the paper that
mining data with 20 attributes is equivalent to performing
3,485, 735,825 (or 32° — 22°) rounds of market-basket style
mining on the same data set if all different combinations of
itemizing and groupings are to be explored. Thus, it is clear
that such unsupervised approach is not feasible.

The foregoing motivates us to constrain the selection of
grouping and itemizing attributes so as to make FARM more
computationally efficient and its results more meaningful.
To this end, we develop attribute predicates that constrain
the ways in which grouping and itemizing occur, and we
show how these predicates can be incorporated into FARM.
Figure 1 provides examples of such predicates, especially
if we also consider the attributes AM/PM (twelve-hour pe-
riod), Intrvl130 (thirty-minute intervals), Site (location of
the host), and Maint.

1. Time is in a twelve hour format. Thus, if the group-
ing attributes include Time, they should also include

SIGKDD Explorations.

AM/PM. The same argument applies to Intrvl5 and
Intrv130.

2. The reason for a perceived host failure may be that
it is recovering after a normal maintenance operation.
Indeed, in Figure 1 we see that the failure of router16
at 2:16:09 occurs within the maintenance window for
that host. Thus, if EventType is an itemizing at-
tribute, we should also include Maint.

3. Certain logical dependencies exist in the data that can
reduce the attribute combinations. For example, if we
use Intrvl5, we know Intrvl30 (i.e., there is a func-
tional dependency). Similarly, if we know the Host,
then we know the Site.

Exploiting these relationships between attributes can result
in a substantial reduction in the number of patterns re-
ported. Indeed, in our studies, reductions of several orders
of magnitude are achieved.

1.1 Problem Statementand Scope

We have two goals in this study. The first is to design a
small and comprehensible set of directives that allow users
to specify the domain knowledge based on attributes in an
intuitive way. The specification language should be expres-
sive enough to incorporate common knowledge without op-
erational instructions. For example, users should be able
to indicate relationships (such as functional dependencies)
among attributes, in which way should these attributes be
used in itemizing or grouping, and whether some attributes
should be included in mining at all.

The second goal is to design an inference system that can
translate the domain knowledge expressed in this denota-
tional specification language to operational instructions that
guide the frequent itemset mining algorithms to avoid un-
necessary computation.

To realize these goals, we organize the search space into
novel architecture that is conducive to attribute-based prun-
ing. Our approach is based on the FARM framework [13],
where each mining template directly corresponds to a unique
attribute mapping, and connects to other mining templates
through a rich set of downward closure relationships. It is
through these relationships that user-directed pruning of the
search space takes place. In this paper, we omit issues such
as candidate generation, aggregating functions, and instance
counting. Interested readers can find the details in [13].

1.2 RelatedWork

Agrawal et.al. [2; 3] identified the association rule problem
and developed the level-wise search algorithm. Since then,

Volume 4, Issue 1 - page 57

many algorithms have been proposed to make mining more
efficient (e.g. [1; 4; 9; 10] and [5] for a review). Our work
builds on these efforts but broadens the scope of the mining
problem.

Mining data with multiple attributes has been recognized as
an important task. Srikant et.al. [16] and Han et.al. [8] con-
sider multi-level association rules based on item taxonomies
and hierarchies. More recently, Grahne et.al. [7] proposed
the dual mining for mining situations of a frequent pattern.
Our previous work [13] extends these work under a more
general setting. It studied how different mining tasks with
different attributes mappings are related and thus allows us
to reduce search space drastically. The work presented in
this paper has a very different focus in that we seek effec-
tive ways to express knowledge, and we develop an efficient
algorithm that leverage the knowledge for mining process
optimization.

Considerable work has been done in characterizing pattern
interestingness [15; 12] and item constraints [11; 17]. Such
interestingness and constraints are defined based on items
(e.g. item a and b should not appear in the same pattern).
A framework has been developed for describing either inter-
estingness or constraints on items and for efficient mining
by pushing the constraints to the level-wise search in reduc-
ing the number of candidates generated at each level. In
contrast, this paper discusses how to express knowledge in a
much more general way (e.g. attributes {event, type, name}
can not used as itemizing attributes at the same time),
which is on a higher level than the item-based approach.
We demonstrate that such knowledge (or constraints) about
variables help us to drastically reduce the mining space. Fur-
ther, we describe a language that can be used to describe
common constraints and develop algorithms to construct op-
timal mining paths.

1.3 Paper Organization

We first review the FARM framework in Section 2. In Sec-
tion 3, we describe the Attribute Specification Language
(ASL), which enables users to specify attribute-level domain
knowledge. Section 4 describes how the system interprets
the specifications in ASL and translates them to data min-
ing constraints. Section 4.1 introduces the concept and re-
alization of semantic closure. Sections 4.2.1 4.2.2 4.2.3
and 4.2.4 present various types of mining camps that can
be pruned from mining spaces and the methods of identi-
fying them. Section 4.2.5 describes the properties of the
inference methods and how it can be implemented as a con-
straining module of FARM. In Section 5, we demonstrate
how to express domain knowledge in ASL and how the infer-
ence system can greatly reduce the mining space. Section 6
concludes the paper.

2. THE FARM FRAMEW ORK

Mining for frequent itemsets typically involves a preprocess-
ing step in which data with multiple attributes are grouped
into transactions, and items are defined based on attribute
values. Such fixed attribute mining can severely limit the
patterns that are discovered. For instance, in supermarket
data, the market basket attribute might be used to group
data into transactions and the product-type attribute (with
values such as diapers, beer) to define items. Fixing the at-
tributes used to define transactions and items can severely
constrain the patterns that are discovered. For example,

SIGKDD Explorations.

by defining transactions as products purchased together, we
may fail to discover relationships between items purchased
by the same family in a single month.

To go beyond fixed attribute mining to mine directly from
multi-attribute data, we introduced FARM [13]. In FARM,
transaction is a general term for a group of records, which
are formed dynamically based on the values of a set of attri-
butions. More formally, we are given data D with attributes
A = {Ay,---,A}. Each record in D is a k-tuple. For a
given pattern, a subset of these attributes is used to define
how transactions are grouped and another (disjoint) subset
of attributes determines the items.

We use the term mining camp to provide the context in
which patterns are discovered. The context includes the
length of the pattern (as in existing approaches), the group-
ing attributes, and the itemizing attributes.

DEFINITION 1. A mining camp is a triple (n, G, S) where
n 1s number of records in a pattern, G is a set of grouping
attributes, S is a set of itemizing attributes, and G S = 0,
S #0.

Next, we formalize the notion of a pattern. There are several
parts to this. First, note that two records occur in the same
grouping if their G attributes have the same value. Let
r € D. We use the notation wg(r) to indicate the values of
r that correspond to the attributes of G.

DEFINITION 2. Given a mining camp (n,G,S) where S =
{S1,-++,Sm}. A pattern component or item is a se-
quence of attribute values sv = (si,---,s,) where
s € Si for 1 < i< m. We call p = {sv1,---,svn} a
pattern for this mining camp if each sv; is a pattern
component for S.

An instance of a pattern is a set of records whose values
of grouping attributes agree and whose itemizing attributes
match those in the pattern.

DEFINITION 3. Let p = {sv1, - ,sv,} be a pattern in
mining camp (n,G,S) and let D be a set of records. An
instance of pattern p is a set of n records R = {r1,--- ,rn}
such that r; € D and ws(r;) = sv; for 1 <i<n, and r; and
r; are G-equivalent for all v;,r; € R.

Note that if G and S are fixed, then we have the traditional
fixed attribute data mining problem. Here, downward clo-
sure of the pattern length is used to look for those patterns in
(n+1, G, S) for which there is sufficient support in (n, G, S).

L?Ie‘: A{TH{AD @{TBr{A}) @{T}{AB}) ({73 {B}) (L{TA}{B})
2 {TH{AD {TB}{A}) (2{T}{AB}H) {T3.{B}) (2{TA}.{B})
3 B{TH{AD @B{TBI{A}) B{T}{AB}) B{Tr(B}H) B{TAL{B})
4 4{Tr{AD @{TB}{A}) (4{T}{AB}) (4{T1.{B}) (4{TA}{B})

Figure 2: A Simple Search Space

In FARM, G and S need not to be fixed. Consider the at-
tributes T, A, B for which we require that T € G. Figure 2

Volume 4, Issue 1 - page 58

displays one way to search these mining camps. In essence,
a separate search is done for each combination of G, S. This
scales poorly. In particular, the number of permitted com-
binations of G and S is 3* — 2%, where %k is the number
of attributes (which follows from observing that A; may be
in G, S, or neither and eliminating the 2* cases for which
S =0).

FARM defines a rich set of interrelationships among differ-
ent mining camps. Consider a mining camp (n, G, S), and
attribute A; ¢ S. Let p be a pattern in (n,G,S). Now
consider (n + 1,G,SU{A:}). If p is a sub-pattern of p’ in
this second mining camp, then every occurrence of p’ in this
camp is also an occurrence of p in the first camp.

The foregoing suggests that mining camps can be ordered
in a way that relates to the downward closure property.

DEFINITION 4. Given a mining camp C = (n,G,S) and
an attribute A; ¢ GU S then

1. (n+1,G,S) is the type-1 successor of C.
2. (n,GU{A;},S) is a type-2 successor of C.
3. (n,G,SU{A;}) is a type-3 successor of C.
We use succ(Cp,Cs) to denote Cs is a successor of Cp.

Figure 3 depicts the predecessor and successor relationships
present among different mining camps. The root precedes
all other mining camps. (In this case, it is not a real camp
since S =).) Now we can define mining spaces.

DEFINITION 5. A mining space MS(C) is a partially
ordered set (poset) of mining camps containing C and all
of its successors.

We can group mining camps to levels.

DEFINITION 6. The level of mining camp (n, G, S) is de-
fined as n+|G|+|S|. We use Ly to denote all mining camps
of level k.

Since n is at least 1 and S is nonempty, a minable mining
camp has level no less than 2. We structure the mining
camps so that the successor relationships only exist between
mining camps at different levels. This imposes a partial
order.

The organization of the mining space in Figure 3 is justified
by the downward closure property between each predecessor
and successor camps. Exploiting these properties provides
considerable benefit in terms of efficiency.

THEOREM 1. Let C = (n,G,S) be a mining camp. As-
sume the support of pattern p = {svi,--- ,sv,} in C is less
than threshold 6, we have:

1. For any pattern p’ in a type-1 successor of C, and p'
is a superset of p, the support of p’ is less than 6.

2. For any pattern p' in a type-2 successor of C, the sup-
port of p' is less than 6.

3. For any pattern p' = {sv},--- ,sv;,} in a type-3 succes-
sor of C, and sv; C sv} for all 1 < i < n, the support
of p' is less than 6.

SIGKDD Explorations.

3. ATTRIBUTE SPECIFICATION LANGUAGE

In this section, we present the Attribute Specification Lan-
guage (ASL) designed to express domain knowledge for the
underlying relational data in mining. The language is small
and easy to comprehend, at the same time it allows most
types of domain knowledge to be specified easily. It is also
a high level specification which hides the inference mecha-
nism behind it. The ASL is essentially a set of predicates
that specify the properties of the attributes. An attribute
specification is a set of ground atoms (well-formed formulae
without connectives).

Assume A, A;, and Aj are attribute sets.

e ignore(A) means attribute set A has very little signif-
icance in analysis and should be completely left out.
For example, attributes with unique values (Rec in Fig-
ure 1), and other numerical attributes that are not ap-
propriate for frequent itemset mining can be ignored.

e follow(A1, As) specifies those attributes that by them-
selves are insufficient to form an independent semantic
unit, and thus must be combined with other attributes.
For example, attribute City alone does not provide
sufficient information for the location. There are six
Orange counties/cities and 24 Springfield cities in the
U.S. To avoid this ambiguity, users can simply spec-
ify follow({City}, {State}). With this, State can be
used freely but whenever City is used, State must be
used as well.

e decide(A1, A2) specifies functional dependency: attribute
set A; uniquely determines attribute set As.

e together(A) means no subset of attribute set A can be
used independently. In other words, all attributes in
A together forms an atomic semantic unit.

o item_only(A) specifies that attributes in A, when used,
should only be used as itemizing attributes.

e group_only(A) specifies that attributes in A, when used,
should only be used as grouping attributes.

o always_group(A) means A should always be included
as grouping attributes.

e always_group(A) means A should always be included
as grouping attributes.

e repel_group(A) means no two elements of A can be
used as grouping attributes together.

o repel_item(A) means no two elements of A can be used
as itemizing attributes together.

e repel(A) means no two elements in A should appear
together in the same mining camp.

We define an ASL specification, or simply specification,

as a set of instantiated atomic formulae using the above
predicates.

Volume 4, Issue 1 - page 59

Level

3 @A{T}. {A})

4 {1} {A} (1{TB}.{A})

5 G{T{AD (2{TB}{A})

6 {11 {A}D) (3{TB}{A})

LA™Y

L.{T13,{B}H

(1{T}.{AB}) ({TA}{B}) (2{T}{B}H

(2{T}{AB}) {TAL{B}) (B{T}.{B})

(B{T}{AB}) G{TA}{B}) (4{T}{B})

Figure 3: Search Space M S(1,{T}, {}) for attribute set {T', A, B}

4. THE INFERENCE SYSTEM

In this section, we describe the inference system designed
to translate specifications to operational instructions, which
in turn provides guidance in mining space exploration. The
inference system is a deductive system with a mixture of
proof-theoretic and model-theoretic operations. We first dis-
cuss how to find the semantic closure of user-specification.
Then we describe the rules that identify three types of min-
ing camps that can be eliminated based on the semantic
closure. Finally, we present a high level algorithm of the
improved FARM.

4.1 SemanticClosure of Specifications

The attribute specification language allows users to express
domain knowledge in a rather casual style. For example, one
user may specify decide({a}, {b}) and decide({a, b}, {c}), and

another user may specify decide({a}, {b}) and decide({a}, {c})

but the two specifications are essentially same. Semantic
closure is used here to as a more expression-neutral knowl-
edge base. For a specification, its semantic closure is all
the atomic formulae implied by it. The following definition
lists the axioms that extend a specification to its semantic
closure.

DEFINITION 7. The ASL semantic closure aziom set, de-
noted as SC, contains the universally quantified closure of
the following formulae.

1. decide(X,Y) «— (3X’ C X,3Y" D Y)decide(X',Y").

Now we can define the semantic closure of a specification.
The symbols used here follow the convention in mathemat-
ical logic[6].

DEFINITION 8. Given SP, a set of atomic formulae in
ASL, its semantic closure, SP*, is defined as

SP* = {F|SCUSP + F}

The introduction of semantic closure gives more freedom to
specification writers in expressing their intention. Here we
use the example mentioned earlier to demonstrate different
specifications can have the same semantic closure. Let

SP, = {decide({a}, {b}),decide({a,b},{c})}

and

SP, = {decide({a}, {b}), decide({a}, {c})},
We have
SPy, SC + decide({a},{c})
by axiom SC (3), and
SP,,SC t decide({a, b}, {c})

by axiom SC 1. So we conclude SP1 C SP; and SP:» C
SPy, hence SP; = SP;.

Note the semantic closure is not intended or necessary to be
complete in the sense of first order predicate logic. However,
this is not a real issue, as it will become clear soon, the

2. decide(X1UXs,Y1UYz) — decide(X1, Y1) Adecide(Xs, V). coverage of predicates may overlap but it is relatively easy to

co

decide(X,Y) +— (3X')(decide(X,X’) A decide(X U
X,Y))

follow(X,Y) +— (3X’' C X) follow(X",Y).
follow(X,Y) «— (AY' DY) follow(X,Y").
follow(X,Y1UY3) «— follow(X, Y1) A follow(Y1,Y3).

NS o

together(XUY) «— together(X)Atogether(Y)A(XN
Y #0).

8. ignore(X') +— group_only(X) Aitem_only(Y)AX' =
XnY.

9. ignore(X') +— together(X) Arepel(Y)AX' = XNY.

SIGKDD Explorations.

check whether a mining camp conflicts with a specification.
4.2 Reasoningon Mining Camps
4.2.1 Mining CampsClassification

We start by introducing the predicate nir. Assume C is a
mining camp, nir(C') means mining C' yields no interesting
result. The goal of the inference system is to identify all
mining camps that that yields no interesting result. There
are three different reasons that nir(C) holds for a mining
camp C:

1. The output of C' is empty, or empty(C)

2. The output of the mining camp is not of users’ interest,
or forbiden(C).

Volume 4, Issue 1 - page 60

3. The results of the mining camp C can be inferred by
results of another mining camp C”, or reducible(C, C").

That is,
nir(C) = empty(C) V forbiden(C) V (3C")reducible(C,C")

The rest of this subsection discuss how to check whether a
mining camp is empty, forbidden or reducible.

4.2.2 Inferring EmptyCamps

There are two ways to validate empty(C). First, given a
dataset D, we can check whether there exists any interesting
frequent itemset of C' in D and we use D = empty(C) to
denote that there is no frequent itemset in C. This is called
model-theoretical validation. Second, given a set of formulae
F, we can try prove that F' implies empty(C) by standard
inference rules like modus ponens or resolution[14]; and we
use F' + empty(C) to denote empty(C) is deducible from F'.
This is called a proof-theoretical validation.

In a priori and original FARM, the empty property can only
be inferred from validated formulae of the empty predicate.
With users’ specification, the following lemma also infers
empty mining camps.

LEMMA 1. The aziom set of emptiness, EA, contain the
following formula:

empty((n,G, S)) +— (n > 2) Adecide(G, S)
We have the following corollary of Theorem 1.

COROLLARY 1. (VCp, Cs)(empty(Cp) A suce(Cp, Cs) —
emtpy(Cy)).-

Model-theoretical and proof-theoretical approaches in real-
ity are very different in cost and effect. Model-theoretical
validation requires scanning the data set, an expensive pro-
cess but Proof-theoretical validation is very simple because
the logic system we proposed in this paper is obvious fi-
nite, decidable and fast. In fact, we can re-interpret the
a priori principle[2] as a method to maximize the use of
proof-theoretical operations and minimize the use of model-
theoretical operations.

4.2.3 Inferring ForbiddenCamps

Inferring forbidden camps is fortunately a purely proof-theoretical

operation. There are two types of forbidden camps. Type
1 refers to those camps not only themselves are not of in-
terest, all their successors are not of interest too. Type 2
forbidden camps are those themselves are not of interest but
their successors maybe of interest.

The following axiom set defines how to validate whether a
mining camp is forbidden.

DEFINITION 9. The aziom set for type 1 forbidden prop-
erty, FAl, includes the following formulae:

1. forbiddenl((n,G,S)) <«— (3X)(ignore(X) A ((X N
G#0)V(XNS#D))).

2. forbiddenl(n,G,S) +— (3X,Y)(follow(X,Y)A(X C
G)A (Y NS #0)).

3. forbiddenl(n,G,S) +— (3X,Y)(follow(X,Y)A(X C
S)YA Y NG #0)).

SIGKDD Explorations.

4. forbiddenl((n,G,S)) «— (3X)(together(X) A (X N
G#DAXNS£D)).

5. forbiddenl((n, G, S)) +— (3X)(group-only(X)AX C
S).

6. forbiddenl((n,G,S)) «+— (3X)(item_only(X) A X C
G).

7. forbiddenl((n,G,S)) +— (IX)(always_group(X) A
XNG#0).

8. forbiddenl((n,G,S)) +— (3X)(always_item(X)AXN
S #0).

9. forbiddenl((n,G,S)) «— (3Xz1z2)(repel_group(X)A
{z1,22} CGNX).

10. forbiddenl((n,G,S)) «— (3Xz1z2)(repel_item(X) A
{z1,z2} C SNX).

11. forbiddenl((n,G,S)) +— (IXz1z2)(repel(X)A{z1,z2} C

SUG).

By the definition, the property forbiddenl is downward
closed and hence we have the following lemma. It is prov-
able by structural induction, here we show the proof of one
selected case.

LEMMA 2. (VCp, Cs)(forbiddenl(Cp) A succ(Cp, Cs) —
forbiddenl(Cs)).

PROOF. [(2)] Assume for a mining camp C = (n,G,S)
and (AX,Y)(follow(X, Y)A (X CG)A(Y NS #0)), then

1. For type-1 successor (n + 1,G,S), the condition still
holds.

2. For type-2 successors (n,G U {a;},S), X C GU {a;}
holds, so the condition holds.

3. For type-3 successors (n, G, SU{a;}), YU{a;} NS # 0
still holds, so does the condition.

O

DEFINITION 10. The aziom set for type 2 forbidden prop-
erty, FA2, includes the following formulae:

1. forbidden2((n, G, S)) «+— (3X)(always_item(X)AX €
S).

2. forbidden2(n,G,S) +— (3XY)(follow(X,Y) A (X C
G)NY ZG)).

3. forbidden2(n, G, S) +— (3X,Y)(follow(X,Y)A(X C
S)NY £ 5)).

4. forbidden2((n,G,S)) +— (3X)(together(X) A (X N
G#OANXZG)).

5. forbidden2((n,G,S)) «— (3X)(together(X) A (X N
S#ENON(XLS)).

6. forbidden2((n,G,S)) +— (IX)(always_group(X) A
X ZG).

7. forbidden2((n,G,S)) +— (3X)(always_item(X)AX L
S).

So, the predicate forbidden is defined as
forbidden = (forbiddenl(C) V forbidden2(C)).

Volume 4, Issue 1 - page 61

4.2.4 Inferring Reduciblecamps

Validating reducible mining camps is also a purely proof-
theoretical operation.

DEFINITION 11. The reducible aziom set, RA, includes
the following formulae:

1. reducible((n, G, S), (n, G\G', S)) «— decide(G\G',G’).
2. reducible((n, G, S), (n, G,S\S')) +— decide(S\5',S").
The reducible property is also downward closed.

LEMMA 3. (VCpCC1)(reducible(Cyp, C1)Asuce(Cp, Cs) —>
(3C2)(reducible(Cs, C2))).

PROOF. (1) For a mining camp C = (n,G,S), assume
decide(G\G', G") holds, so reducible((n, G, S), (n, G\G', S))
holds, then,

ignore({Rec})

ignore({Time})

together({ EventType, Maint})

follow({Date}, {AM/PM?})

follow({Intrvls, Intrvi30}, {AM/PM})
group_only({Date, Intrvld, Intrvl30, AM/PM})
item_only({ EventType, Source, Subsource, Severity})
decide({ EventType}, {Subsource})
decide({Subsource}, {Source})
decide({EventType},{Severity})
decide({Host},{Site})

repel({Intrvl5, Intrvi30})

Figure 4: Specification System Management Events

from proof-theoretical validation, NIR; , and the part from
model-theoretical validation; NI R;" is the set of camps that
are avoidable but some of their successors may still of inter-

1. For type-1 successor (n+1, G, S), reducible((n+1, G, S), (n+ €St

1,G\ G, S)) holds.

2. For type-2 successors (n,G U {a;},S), by 1 of SC,
decide(G U {a;} \ G',G') holds, so reducible((n,G U
{a:},9),(n,GU{a;} \ G',S)) holds.

3. For type-3 successors (n, G, SU{a;}), it is obvious that
reducible((n, G, S U {a;}), (n, G\ G', S U {a;})) holds.

(2) similar. O

4.2.5 Implementatiorof the InferenceSystem

For the predicates we discussed, forbidden?2 is the only one
that is not downward closed, so we have to define a predi-
cates for those downward closed predicates.

nir~ (C) = empty(C)V forbidenl1(C)V(3C")reducible(C,C"))

Combining Corollary 1, Lemma 2, and Lemma 3, we con-
clude the main theorem of this paper.

THEOREM 2. nir~ s downward closed; that is,

(VCp, Cs)(nir~ (Cp) A suce(Cp, Cs) — nir (Cs))

Now we are ready to present the inference procedure of speci-
fications. For a predicate P of ASL and a set of mining camp
CS, we use the notation P(CS) to denote {P(C)|C € CS}.
Given a mining space M S(C,), a dataset D, and a specifi-
cation SP , let TF = SPUSCUEAUFA1URA and k
be the level of C,. Let L; be the mining camps of level i,
NIR;, the set of avoidable mining camps of level 4, can be
computed by the following procedure:

NIR, = 0
NIR;,; = {C € Li11|((3C" € NIR;)succ(C’,C)) or
TFUnir (NIR;) Fnir— (C)}
NIRf,;, = {C € Liy1\ NIR;,|FA2UTF F nir(C)}
NIR} ., NIR™ U{C € Liy1 \ NIR/,||D = empty(C)}
NIRiy1 = NIR;UNIRf,

where NIR; is the set of camps that themselves and all their
successors can be avoided. It contains the part obtained

SIGKDD Explorations.

A natural way to implement the inference system is to use
Prolog or other logic programming language. There are
usual concerns with using logic programming language: mono-
tonicity, termination, performance, etc. These concerns are
carefully dealt with in this study. First, all the logic sen-
tences used in the inference system are positive definite Horn
clauses and conform the fix-point semantics[18; 19] hence the
reasoning is monotonic. Second, there is no function sym-
bols in the system, and set operations involved only sub-
sets of the attribute set, hence termination is guaranteed.
Third, there is no need to actually find the complete seman-
tic closures of specifications. The depth-first search method,
or SLD-resolution, of Prolog can avoid non-necessary com-
putation. Also, the sizes of specifications rarely exceed a
thousand formulae, which can be easily handled by existing
Prolog interpreters. So performance is not an issue.

The harnessing of Prolog also makes ASL and the inference
system easily extensible. One can add predicates to the lan-
guage along with a set of formulae that define their seman-
tic closure and axioms for proving empty, forbidden, and
reducible properties. Then the inference system should be
able to interpret those predicates and identify more avoid-
able mining camps.

5. CASE STUDY

In this section, we demonstrate how the problem size of
the example in Section 1 can be greatly reduced. The data
set in the example contains 13 attributes. If no constraint
is applied, there are 1,586,131(= 3'® — 2!%) possible map-
pings. Exhausted mining is obvious not a feasible option.
However, manually selecting mappings is not a good option
either because it is tedious and prone to miss some inter-
esting mappings. With ASL, domain experts can state the
following constraints:

1. ignore({Rec}) — The value of Rec is a unique so it
can not be used as a grouping attribute because no
two items have same Rec value. It is not an itemizing
attribute either because it makes every item distinct
to the others.

2. ignore({T'ime}) — Time, one-second period, is too short
to be used to associate events.

Volume 4, Issue 1 - page 62

3. together({ EventType, Maint}) — for event types, we
always have to consider whether they really indicate
actionable situations or simply a transient signal in
maintenance operations.

4. follow({Date}, {AM/PM}) — When Date is used as
the only temporal attributes in grouping, events ob-
served in 24-hour periods are grouped together. Do-
main experts believe 24-hour periods are too long and
should be refined to 12 hour or less.

5. follow({Intrvl5, Intrvi30}, {AM/PM}) — The two in-
terval attributes are ambiguous without specifying AM
or PM.

6. group_only({Date, Intrvls, Intrvli30, AM/PM}) — Tem-
poral are only used as grouping attributes.

7. item_only({ EventType, Source, Subsource, Severity})
— These four attributes are all information about the
nature of the events and are valuable as association
rules. However, it is not clear what are the values and
meaning to use them as grouping attributes.

8. decide({EventT'ype},{Subsource}) — Each event type
can only be emitted from a subsource (a specific agent
model).

9. decide({Subsource}, {Source}) — Each subsource is a
sub-model of a event agent.

10. decide({EventType},{Severity}) — In this dataset, sever-

ities (harmless, warning, minor, major, severe, critical
and fatal) of an event are assigned based on the event
type.

11. decide({Host},{Site}) —Host names are unique across
domains and each host only resides in one domain.

12. repel({Intrvl5, Intrvl30}) — The two interval attributes
are derived from Time to study associations within dif-
ferent time granularities so they should be separated
from each other.

As stated before, domain experts can specify their knowl-
edge in a casual way without thinking too much about the
implication. The inference system will find the semantic
closure of the specification as true intention of the domain
experts. So many different specifications may have the same
intention. For example,

follow({Intrvl5, Intrvl30},{AM/PM}) can be broken up
to two clauses or merge with

follow({Date}, {AM/PM?}) and become

follow({Date, Intrvlb, Intrvl30}, {AM/PM}). With

group_only({Date, Intrvlb, Intrvl30, AM/PM}) already spec-

ified, repel({Intrvl5, Intrvl30}) has the same effect as
decide({Intrvl5, Intrvl30}).

The reduction of mining space is shown in Figure 5. The
data set has 13 attributes so levels above 14 all have same
number of mining camps. The table shows the numbers of
mining camps for the cases of exhausting all mining camps,
ignoring 2 attributes, ignoring 3 attributes, and applying
the specification in Figure 4.

With the help of domain knowledge, the maximal number
of mining camps of a level is reduced from 527, 345 to 321.
The problem becomes solvable and the resulting patterns

SIGKDD Explorations.

have better chance to be interpreted and responded to. The
inference system can be used alone without actually mining
data; it can list all the remaining mining camps in the mining
space for user to specify more domain knowledge for further
reduction.

6. CONCLUSION

Advances in association rule mining has come the point to
deal with common relational data with multiple attributes.
However, the enormity of attribute mappings posts a severe
challenge to multi-attribute mining on both the computa-
tional complexity and usability of the results. However,
minimal domain knowledge of the attributes can provide
tremendous reduction on the problem size while not losing
any interesting patterns.

We presented a multi-attribute data mining framework with
the capability of utilizing domain knowledge about attributes
to in association rule discovery. The framework includes two
parts. The first part is an attribute specification language,
ASL, that allows users to specify what and how attributes
should be used. ASL consists a set of predicates with simple
and comprehensible semantics. The second part is an infer-
ence system that is responsible for determining whether a
mapping of attributes to itemizing and grouping attributes
may produce any interesting results. The system uses a set
of axioms to find the semantic closure, the real intention, of
the specification. Then it combines the specification, the se-
mantic closure axioms and axioms of empty, forbidden, and
reducible properties to infer the properties of mappings. We
presented a case study on system management event mining.
With domain knowledge, we can transfer the multi-attribute
mining problem from being virtually impossible to solve to
a reasonable problem size; and the results are more mean-
ingful.

There are several directions for further utilizing domain knowl-
edge in data mining. On the attribute level, the ASL lan-
guage can be extended with probabilistic information; and
the inference system must be able to perform fuzzy or Bayesian
reasoning in guiding mining process.

7. REFERENCES

[1] R. Aggarwal, C. Aggarwal, and V. Parsad. Depth first
generation of long patterns. In Int’l Conf. on Knowledge
Discovery and Data Mining (SIGKDD), 2000.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases. In
Proc. of Very Large Database (VLDB), pages 207216,
1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for min-
ing association rules. In Proc. of Very Large Database
(VLDB), 1994.

[4] R. Bayardo. Efficiently mining long patterns from
database. In Int. Conf. Management of Data (SIG-
MOD), pages 85-93, 1998.

[6] J. Deogun, V. Raghavan, A. Sarkar, and H. Sever. Data
mining: Research trends, challenges, and applications,
1997.

[6] H. B. Enderton. A Mathematical Introduction to Logic.
Academic Press, 2nd edition, December 2000.

Volume 4, Issue 1 - page 63

Level | 2] 3] 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

exhaust 121 210 | 1750 | 9175 | 33727 | 91939 | 192523 | 318748 | 431168 | 498686 | 523250 | 527345 | 1586131

ignore 2 10 | 145 | 985 | 4135 | 11947 | 25177 | 40417 | 51892 | 57002 | 58025 | 58025 | 58025 58025

ignore 3 9 | 117 | 705 | 2595 | 6501 | 11793 | 16365 | 18660 | 19171 19171 19171 19171 19171

user-directed | 6 32 86 177 269 313 321 321 321 321 321 321 321

Figure 5: Number of Mining Camps of each level

[7] G. Grahne, L. Lakshmanan, X. Wang, and M. Xie.
On dual mining: From patterns to circumstances, and
back. In Int. Conf. Data Engineering (ICDE), pages
195-204, 2001.

[8] J. Han and Y. Fu. Discovery of multiple-level associa-
tion rules from large databases. In Proc. of Very Large
Database (VLDB), 1995.

[9] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In Int. Conf. Manage-
ment of Data (SIGMOD), 2000.

[10] J. Hipp, A. Myka, R. Wirth, and U. Guntzer. A new
algorithm for faster mining of generalized association
rules. In Proc. 2nd PKKD, 1998.

[11] R. Ng, L. Lakshmanan, J. Han, and A. Pang. Ex-
ploratory mining and pruning optimizations of con-
strained associations rules. In Int. Conf. Management
of Data (SIGMOD), pages 13-24, 1998.

[12] B. Padmanabhan and A. Tuzhilin. Unexpectedness as
a measure of interestingness in knowledge discovery,
1999.

[13] C.-S. Perng, H. Wang, S. Ma, and J. L. Hellerstein.
Farm: A framework for exploring mining spaces with
multiple attributes. In IEEE Int. Conf. on Data Min-
ing(ICDM), 2001.

[14] J. A. Robinson. A machine-oriented logic based on the
resolution principle. Journal of the ACM, 12:23-41,
1965.

[15] A. Silberschatz and A. Tuzhilin. What makes pat-
terns interesting in knowledge discovery systems. IEEE
Trans. On Knowledge And Data Engineering, 8:970—
974, 1996.

[16] R. Srikant and R. Agrawal. Mining generalized associ-
ation rules. In Proc. of Very Large Database (VLDB),
pages 407-419, 1995.

[17] R. Srikant, Q. Vu, and R. Agrawal. Mining association
rules with item constraints. In Int’l Conf. on Knowledge
Discovery and Data Mining (SIGKDD), pages 67-93,
1997.

[18] A. Tarski. A lattice-theoretical fixpoint theorem and its
applications. Pacific J. Math., pages 253-309, 1955.

[19] M. H. van Emden and R. A. Kowalski. The semantics
of predicate logic as a programming language. J. ACM,
pages 733-742, October 1976.

SIGKDD Explorations. Volume 4, Issue 1 - page 64

