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ABSTRACT

Real-world data sets often contain errors and inconsistency.
Even though this is a very important problem it has received
relatively little attention in the research community. In this
paper we examine the problem of learning missing values
when some summary information is available. We use lin-
ear algebra and constraint programming techniques to learn
the missing values using apriori-known summary informa-
tion and that derived from the raw data. We reconstruct
the missing values by different methods in three scenarios:
ideal-constrained, under-constrained, and over-constrained.
Furthermore, for a range query involving missing values, we
also give the lower bound and upper bound for the values
using constraint programming techniques. We believe that
theory of linear algebra and constraint programming consti-
tutes a sound basis for learning missing values when sum-
mary information is available.
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1. INTRODUCTION

The presence of missing or incomplete data is commonplace
in large real-world databases. Missing values occur for a
variety of reasons, e.g., omissions in the data entry process,
confusing questions in the data gathering process, sensor
malfunction, and so on. Learning missing data is critical for
data warehousing, yet little has been done in the research
field.

Consider a scenario of data preprocessing in data warehous-
ing. In a datacube [16] ( A datacube is a widely used data
model for On-Line Analytical Processing (OLAP); a dat-
acube is a multidimensional data abstraction, where aggre-
gated measures of the combinations of dimension values are
kept.) which summarizes sales data for a corporation, with
dimensions “time of sale”, “location of sale” and “product
of sale”, some sale values at combinations of some products,
stores, and periods may be missing. Some of them may
be caused by the true absence of sales during a particular
period and location, but others may be caused by errors.
Hence decisions based on the incomplete data may not be
accurate.

In this paper, we assume:
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e The missing value occurs only in non-negative mea-
1
sures .

o All the dimension attributes have no missing values.

e The positions of missing cells, i.e., the combination of
dimension values, are known apriori.

These assumptions are easy to justify since stores usually
know their products lists and send this information to the
data warehouse. Figure 1 shows the cases which satisfy or
violate the assumptions. In the warehouse the positions of
missing cells can be easily dealt with by using bitmaps that
indicate their locations.

Apart from the above general assumption, it is often true
the participating sources may also have some summary in-
formation, Sa, at high levels, apart from the raw records,
D, at the finest level (we assume the known raw records
are accurate while the summary information may be inac-
curate or inconsistent). The summary information can be
thought as constraints of underlying raw data. For exam-
ple, the simplest summation form requires the sum of subset
of underlying raw data (which may contain missing cells) be
equal to some value. Most “rolled-up” data has this property
(i.e., the weekly or monthly sale totals for some particular
products). For brevity, we choose to focus on summation
constraints for the bulk of this paper. We discuss other con-
straints in Section 3.

Based on the characteristics of constraint information, we
classify the problem into the following sub-scenarios and
study some specific techniques from linear algebra, entropy
theory, and constraint programming for missing value recon-
struction. Figure 2 shows one example for each sub-scenario.

o Ideal-constrained: the aggregation values are accu-
rate and sufficient to infer all the missing values. In
this case, there is no conflict between the raw data
and the known aggregation values. We can get one ex-
act solution for each missing cell by solving the linear
constraint equations.

e Under-constrained: the aggregation values are ac-
curate but not sufficient to infer all the exact missing

!Typically, the measure in data cubes is non-negative and
normally is a semicontinuous attribute which has a propor-
tion of values equal to a single value (typically zero), and
a positive continuous distribution among the remaining val-
ues. For example, the income or expenditures of economic
surveys or sale values in superstores is a semicontinuous at-
tribute instead as continuous attribute since these measures
can often be zero for some combinations of dimension values.
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Table 1: Tuple 3 and 4 violate the assumption for missing occurs in dimensions, ? denotes missing

TUPLE DIMENSION MEASURE | Violate Assumption
STORE | PRODUCT | DATE SALE

1 S1 p1 dq 20 N

2 S1 P1 di ? N

3 S2 ? ds 10 Y

4 ? 223 da ? Y

values. In this case, there may be more than one so-
lutions to satisfy the constraints. We may pick the
optimal one as a representative from the solution set.

e Over-constrained: the aggregation values in S are
not accurate. In this case, no assignment of values to
variables satisfies all constraints . The reason for this
is that some inconsistent summary data is estimated,
rather than known. In this situation, the goal is to
find the best compromise.

In both the under-constrained case and the over-constrained
case, our goal is to find the best estimates. One simple ap-
proach is to reconstruct the missing values by applying lin-
ear algebra techniques to solve the linear constraint equa-
tions. We may get one representative solution in the under-
constrained case or the best compromise solution in the
over-constrained case from the overall view of the underly-
ing data. However, the estimates computed from the simple
linear algebra method may be inaccurate. For example, in
under-constrained case, the estimates may incur big errors
due to the freedom of variables when the number of con-
straints is far less than the number of missing cells. In this
paper we investigate entropy techniques to impute the miss-
ing values subject to the constraints. In over-constrained
case, the estimates may also be inaccurate due to the in-
consistence of constraints. One idea is to choose a maximal
subset of satisfiable constraints . However, this is known
to be an NP-complete problem [5] and a fast algorithm is
unlikely to exist.

If our goal is to construct and keep only one estimated copy,
the data warehouse can replace the missing cells by the es-
timates obtained by the above solution. The imputed copy
can then be used for analysis or querying. As the recon-
structed copy contains the estimation of missing cells, the
analysis result or query answer will still be an approxima-
tion. This will not be satisfactory if the users expect more
accurate results or at least results bounded by a range. In
this paper, we also investigate constraint programming tech-
niques to give query answers that come in the form of guar-
anteed ranges. These answers are obtained by materializing
the missing cells on the fly when the query contains missing
cells.

The rest of the paper is organized as follows. Section 2 de-
scribes the application of linear algebra, entropy, and con-
straint programming techniques to recover missing values
in data warehousing. Section 3 presents extensions to other
constraint forms. Section 4 presents the experimental results
over a real data set. Section b presents the related work. Fi-
nally Section 6 presents conclusions and future work.

2. TECHNIQUE
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Table 2: Sub-scenarios of missing values and aggregation
constraints where x1, z2,x3 are missing cells

sub-scenario constraints solutions
ideal-constrained 1 + x2 = 5 | unique solution
Ty +x3=3
Ti+T2+T3=7
under-constrained 1 + 2 = 5 | many solutions
Ty +x3=3
over-constrained r1+x2=5 no solution
1+ 23 =3
z1+x2t+ax3=7
To+x3 =25

We use A, Ak, B, U, V, A to denote a matrix, T to denote
the transpose, A(4,7) to denote the value at (4, j) position
of matrix, x, b, ¢ to denote a vector, x; to denote the i-th
value in the vector x.

2.1 Reconstructionof Missing Valuesby Lin-
ear Algebra

Given raw data D and an aggregation set Sa, assume there
are n missing cells and | aggregation records in S4. The
procedure of mapping to linear algebra is straightforward as
shown below.

o Identifying the aggregation records which contains the
missing cells.

e Computing the aggregation value §; (s; is the accord-
ing aggregation value) from the known records in D for
each known aggregation record in S4 which contains
the missing cells.

e Computing b; = s; — §; where b; contains only missing
cells.

e Setting a zero-one matrix A by scanning the missing
value list, such that A(7,j) =1 if and only if the miss-
ing value z; lies in j-th aggregation record.

We get the linear equation as shown in Equation 1, where
A is m x n matrix of coefficients with rank(A) = r, x is
an unknown n x 1 column vector, and b is a known m x 1
column vector.

A-x=b (1)

Now the task to compute the missing values by using raw
data and summary constraints is reduced to solving the vec-
tor x in linear algebra equation 1. The methods for linear

Volume 4, Issue 1 - page 22



algebra include Gauss-Jordan elimination, LU decomposi-
tion, and Singular Value Decomposition (SVD). We refer
the reader to a linear algebra text such as [13; 29] for fur-
ther detail.

In this paper, we will apply SVD to solve the linear equa-
tion. The reason is twofold. First, the rows in matrix A may
be correlated and one row can be described by the combina-
tion of some other rows?. Second, the matrix A is typically
large (due to the size of missing values n and the size of
constraints m) and sparse (due to only a few missing cells
occurring in one given constraint). In general, SVD needs
O(mn) space and O(nm?) (or O(mn?) dependent on which
one is smaller) computation. This may be prohibitive, espe-
cially when both n and m are large. In our system, we ap-
ply Fast large-sparse-matrix Singular Value Decomposition
(SVD) algorithms which have been developed with signifi-
cant less complexity in [2]. To make the explanation precise,
we present SVD Theorem as follows (See [13] for proof).

THEORM 1. Every m X n matriz A can be written as
A =UAVT,

where UTU = VIV =1,, and A = diag(A1, - --
0fori=1,---,7, i =0 fori=r+1,---,n

a>‘n): )‘l >

Some properties of SVD show as following:

e Rank property: rank(A) = r, the range space R(A) =

span{ui,--- ,u,}, and the null space
N(A) = span{vy41, -+ ,Vvn}, where U = [ug, - , U]
and V = [vy, -+ ,vy].

e Dyadic decomposition: A =37_ Aju;v{

e Eckart and Young: Assume A = Z " i -vE

with k < r, then min, g)=x||A — B||, = ||A A;c||2 =
Ak41-

When we get the SVD form of matrix A, the solution of
linear equation 1 is shown as,

x =V - [diag(1/A:)] - (UT - b) )
1. Ifall \; >0fors=1,--- ,n, in other words, the num-
ber of independent constraints equals the number of

missing cells, we get one unique solution by Equation
2.

EXAMPLE 1. Consider the ideal-constrained exam-

1 10 5
ple in Table 2, A = 1 01 ),b= 3 |, the
1 11 7
1
unique solution by SVD isx = | 4
2

2. If the vector b lies in the range of A, in other words,
there are effectively fewer constraints than missing val-
ues (under-constrained), then the singular set of equa-
tions has more than one solution. We might want to
pick the one with the smallest length ||x||? if we want

2The reason is the aggregation records may overlap. For
example, the sale value for the first quarter can be inferred
by the sale value for Jan, Feb, March.
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to single out one particular member of this solution-
set of vectors as a representative. Equation 2 gives the
solution vector of smallest length by simply replacing
1/X; by zero for those A; = 0.

EXAMPLE 2. Consider the under-constrained exam-

ple in Table 2, A = 101 , b= 3 , the
3
representative solution by SVD isx = | 2
0

3. If b is not in the range of the singular matrix A, in
other words, there are more independent constraints
than missing values (over-constrained), then the set of
equations has no solution. The reason is not all the
known constraints are accurate. Equation 2 can still
be used to construct a solution vector of x which is
the closest solution in the least squares sense among
all possible vectors x indicated by SVD property. Note
the solution given by Equation 2 will minimize residule
IA - x — bl].

ExXAMPLE 3. Consider the over-constrained ezam-

110 5
) 1 01 3

ple in Table 2, A = 11 1 , b = 7 |-
01 1 5
1.57
the representative solution by SVD is x = 3.57
1.57

which s the closest solution in the least squares sense.

2.2 Maximum Entropy

Another way of approaching the reconstruction of missing
values is provided by the application of the Shannon’s en-
tropy [37]. Let us slightly re-formulate the problem of miss-
ing values by using the formulation of Equation 3.

A.-p=b (3)

where p=%, and S = )" | #;. That is, p is a vector of
normalized missing cells (in which every cell is divided by
the summation of them all). Similarly, b’ = % is a vector of
normalized values.

The objective is to recover the vector p. An estimation
is provided by applying the entropy concept [37] defined
by Shannon. A common method of solving a solution to
the problem stated above is known as the RAS algorithm,
proposed by Krutihof and discussed in [26; 35]. The RAS
algorithm makes use of the entropy concept. The problem
can be stated as follows:

PROBLEM 1 (MAXIMUM ENTROPY). Findp = (p1,---
to mazimize H(p) = — > 7, pi log(p:) subject to
primary constants  p; >0 fori=1,---,n

additional constraints A -p = b’

E?:l pPi = 1.
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The objective function H(p) is simply the measure of the
entropy of P. Roughly speaking, to maximize the objective
function, we try to maximize each missing value’s entropy,
subject to the additional constraints. The analytical solu-
tion to the maximization problem can be obtained using
Lagrangian functions [12].

EXAMPLE 4. Consider the under-constrained example in
Table 2, A = ( Lo ), b = ( > ), the solution by

1 01 3
0.0015
mazimum entropy is x = | 4.9985
2.9985

Notice that the constraints in Equation 3 become non-linear
when the sum of the missing values is unknown, since every
element on the vector b’ is then composed by the inverse of
the unknown sum multiplied by a factor (the value of the
corresponding component of vector b). So, in those cases,
the problem to solve is a maximization of a non-linear func-
tion using non-linear constraints. If the sum is known, how-
ever, the problem is much simplified: the maximization of a
non-linear function over linear constraints.

2.3 Minimum CrossEntropy

In the absence of any other information, the estimates ob-
tained by the RAS algorithm may be poor. Fortunately,
with extra information available improved estimates can be
obtained. Concretely, if an estimate p°® of the matrix p is
made available, the cross-entropy method (CE) [23; 15] may
be employed. The objective of this method is to minimize
the entropy distance between p and p°.

PROBLEM 2 (CRrROSS ENTROPY). Findp = (p1,-+* ,Pn)
to minimize I(p,p°) = 0, pi log(}%) subject to

primary constants pi >0 fori=1,---.n

additional constraints A -p =b'
E?:l pi = 1.

This problem can also be solved by a Lagrangian function.
The estimates provided by the CE method are considerably
more accurate than those provided by RAS. However, in
terms of our problem of finding missing values, that leaves us
with the task of giving a reasonable estimate (and succinct)
p°. That problem can be addressed in many ways. For
instance, one could perform a multiple regression or loglinear
on the known values of the cube (or parts of it), obtaining
rough estimates of the missing values. Note the estimates

of p° is not subject to the constraints.

EXAMPLE 5. Consider the under-constrained ezample in

1
Table?,A:(} (1) ?),b:(i),ifx": 421 ,
1.607
the solution by minimum cross entropy is x = | 3.393 |,
1.393
2.33
if x0 = 2.33 |, the solution by minimum cross entropy
2.33
2.287
1§ X = 2.713
0.713
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The maximum entropy is a special case of the minimum
cross entropy principle. If we do not have knowledge of
the apriori estimates, we will choose p? as 1/n since it has
the most uncertainty. Therefore minimizing cross entropy
I(p, p°) is equivalent to maximizing entropy H(p) as shown
by,

I(p,p°) = Zmlog(%)
i=1 g

_ - ) Di
= ZP%IOQ( 1/n)
i=1

= logn—(— Zmlog(pi))
= logn —H(p) 4)

One point is worth pointing out that a solution to Problem
1 and 2 exists and is unique if and only if the constraints do
not contradict each other [8].

2.4 Discussion

For a given missing value reconstruction problem, it gener-
ally involves two issues:

e whether using constraints will improve the accuracy of
estimates.

e which method (SVD, maximum entropy, and cross en-
tropy) we need choose.

There is no definitely answer to the above two issues. How-
ever, some observations are as follows:

e If the number of independent constraints m is far less
than the number of missing cells n, the representative
solution by SVD will deteriorate due to too much flexi-
bility. We may turn to cross entropy method if we have
relatively accurate estimates of missing cells or we may
directly apply the modeling techniques such as loglin-
ear and logistic models [39] without using constraints.

e On the other hand, the SVD solution in over-constrained
case is the best compromise if the inconsistencies among
the constraints are not large.

e Another theoretical framework for over-constrained prob-
lems is the Maximal Constraint Satisfaction Problem
(Max-CSP) where the goal is to minimize the num-
ber of constraint violations. In [7] an algorithm for
automatically localizing an infeasibility to a minimal
set of causative constraints is developed. The idea
is to gradually eliminate constraints from the original
constraints set until the remaining constitute a mini-
mal infeasible set. The minimal infeasible set contains
the important information about which constraints are
mutually inconsistent.

o If we know the priorities of the constraints (some ag-
gregation values are more accurate than the others),
we can even apply constraint hierarchies [20]. Intu-
itively, optimal solutions of constraint hierarchies are
determined so that they will satisfy as many strong
constraints as possible, leaving weaker inconsistent con-
straints unsatisfied.
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2.5 Approximate Answers by Applying Con-
straint Programming

The missing values x computed by SVD or entropy is the
closest from the overall view. If our goal is to construct and
keep only one estimated copy of data, the solution given by
SVD would be the most appropriate one. The data ware-
house can materialize all the summary information at high
levels based on this copy and answer the users’ query. The
approximate query answer based on one imputed copy will
not satisfy users’ needs if the user expects the exact answer
or at least an approximate answer bounded by a range. We
propose to materialize and recover the missing cells on the
fly by applying linear programming techniques.

Linear Programming (LP), deals with the problem of max-
imizing or minimizing a linear objective function over some
linear constraints as shown,

PROBLEM 3  (SIMPLE LP). Find x = (21, ,%xs) t0
minimize or mazimize V(x) = Y7 cix; subject to

primary constants z; >0
additional constraints Ax =b

fori=1,---,n
Aismxn,bismxl

Given raw data D and aggregation set S4, we follow the
same procedure to get additional constraints Ax = b. For
a range query ¢, assume the missing values involved in g is
x4 = (ziy,- - ' Ti ), where x? C x, the objective function to
minimize or maximize V' (x?) = }_, ., i can be mapped to
Simple Linear Problem in the general form V (x) = 3.7, cizi,
where ¢; = 1 if and only if the missing value z; € x4,
otherwise ¢; = 0. Therefore, the according minimum and
maximum value subject to the primary constraints and ad-
ditional constraints shown in Liner Problem 3 will give the
lower bound and upper bound of query ¢ where the true
unknown value lies.

One most prominent algorithm for linear programming is
simpler method. Although the simplex method is not a
polynomial-time method in the worst case (some artificial
examples show exponential running time), in practice, the
simplex method is very fast and in theory the average num-
ber of steps can be shown to be linear. [29] gave some routine
implementation in C code.

However, the cost to solve the linear programming on the fly
is not negligible, especially when the matrix A is large. One
approach is to precompute and save the lower bound and
upper bound for each missing cell. This bound can be used
to check whether the estimated value computed from other
models lies in this range. We may also use the bound for
each missing cell to give the coarser bound of range query
which contains more than one missing cells. For example,
if we have st < z; < s¥, and s¥ < zy < s¥ ..., then
31L+32L <z +x2 Ssg+sg.

3. OTHER CONSTRAINT FORMS

The specific constraints in S4 may take many different forms.
For example, some aggregation values may be given an up-
per bound while some may be given a lower bound. All the
distributive and algebraic aggregation [16] such as sum, av-
erage, minimum, and maximum can be described by linear
algebra, in the very similar way 2. For these constraint forms,
the Simple Linear Problem may be generalized as follows,

3The binary inequalities (x;—z; < ¢;;) and holistic functions
such as median can not be treated this way.
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PROBLEM 4 (GENERAL LP). Find x = (21, -
minimize or mazimize V(x) = Y i, cizi subject to

,Zn) to

primary constants z; >0

additional constraints A1x = by
Azx S b2
A3X Z b3

fori=1,---|n

Note all of the constraints described above are fundamen-
tally similar in nature and can be transformed from one
form to the other in a straightforward manner. It should be
pointed out that all the following three problems are poly-
nomially solvable [36].

e Given a matrix A and a column vector b, test if Ax <
b has a solution, and if so, find one.

e Given a matrix A and a column vector b, test if Ax =
b has a nonnegative solution, and if so, find one.

e Given a matrix A and a column vector b, and a row
vector c, test if maz{cx||Ax < b} is feasible, finite,
or unbounded. If it is finite, find an optimal solution.

4. EXPERIMENT AL RESULTS

In this section we show the results of experimenting with

census data (http://www.census.gov/main/www /access.html).

The data set contains population broken by state and year
with domain size of 51 and 5 respectively. There is a total
of 255 cells.

4.1 Quality Measures

Since the imputation value is approximate, we need to define
ways to compare the results computed by different methods.
In this subsection we describe the measures we use for that
purpose.

The measure has to do with the error incurred in the ap-
proximation methods. Equation 5 and 6 show the relative
sum error (RErr) and squared sum error (SSE) for the miss-
ing values respectively, where x; is the true value for missing
cell and £; is the estimated value computed from a model.
These two measures can tell us roughly how good a missing
value imputation algorithm is.

) Nz =25l

% (5)

RErr =

Ej (z; — i‘j)2

n

SSE = (6)

4.2 Under-constrained

From the census data set, we randomly choose 10 cells as
missing cells and randomly generate some constraints. Each
constraint contains a random number of missing cells. Note
in under-constrained case, the aggregation value for each
constraint is accurate.

Figure 1 and Figure 2 show the RErr and SSE for the
different imputation methods. In each figure, we vary the
number of independent constraints (0,2,4,6,8,10) and show
the accuracy measure for each method, mean substitution,
loglinear model, SVD, maximum entropy, and cross entropy
(the apriori estimated value from loglinear model).

Some observations from the graph are worth pointing out:
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—6— mean substitation
—&- loglinear

25¢ —# Cross entropy
— maximum entropy
- svd

Error (RErr)

Number of known constraints

Figure 1: Accuracy (RErr) of different methods over census
data set which contains 10 missing cells

e Asexpected, as the number of independent constraints
grows, the results get more accurate for all the meth-
ods that do use the constraints (cross entropy, maxi-
mum entropy, and SVD.) In the ideal constrained case
(10 independent constraints are given), we can restore
the missing values losslessly by all the three methods.

e The cross entropy method works best for almost all
cases we tried. The exception being cases when there
are few (or zero) independent constraints, where loglin-
ear estimation works better. However, the accuracy of
cross entropy method depends on the initial estimate
p° (x°). Figure 3 and 4 show the accuracy compari-
son of cross entropy with loglinear estimate and cross
entropy with simple mean substitution. We can see
the better estimates from loglinear model give better
accuracy result.

e Maximum entropy tends to be outperformed by cross
entropy. The reason is that maximum entropy tends
to split the probabilities as equally as possible while
respecting the constraints.

e SVD will be a good choice when the size of known
constraints (compared with the size of missing cells) is
large. In that case, more missing values are given as
exact values.

e Mean substitution is generally a bad choice, even though
it requires very little processing.

4.3 Over-constrained

In this experiment, we fix the size of missing cells as 10
and vary the number of independent constraints (10, 15,
25). For each combination, we test 10 cases by varying the
perturbation error of constraints from 1% to 10%. Note here
the aggregation values for constraints are not accurate any
more. In this case, as we discussed before, no assignment of

SIGKDD Explorations.
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Figure 2: Accuracy (SSE) of different methods over census
data set which contains 10 missing cells
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Figure 3: Accuracy (RErr) of cross entropy with loglinear
initialization vs. cross entropy with mean initialization over
census data set which contains 10 missing cells
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Figure 4: Accuracy (SSE) of cross entropy with loglinear
initialization vs. cross entropy with mean initialization over
census data set which contains 10 missing cells

values to missing cells satisfies all given constraints. Figure
5 and 6 shows the RErr and SSE for SVD method with
different size of constraints.

Some observations from the graph are as follows:

e As expected, as the pertubation error of constraints
grows, the results get less accurate for all cases. If
there is no perturbation error and the number of con-
straints is equal to or greater than the missing cells,
SVD can restore the missing cells losslessly.

e SVD with the largest number of constraints (25) works
best, then SVD with the smallest number of constraints
(10), and SVD with medium number of constraints
(15) works worst. The explaination has two parts.
First, when there exists some conflict constraints (the
number of constraints is slightly greater than the num-
ber of missing cells), the simple approach (To ran-
domly choose some constraints or to choose those strong
constraints if we know the priorities of the constraints)
works better than SVD which tries to satisfy all the
inconsistent constraints. Second, when the number of
constraints is much larger than the number of miss-
ing cells, SVD which tries to satisfy all the constraints
will improve the performance as the effect of conflicts
diminishes along the increase of constraints.

4.4 Discussionof Scalablity

The above experiment only shows the accuracy performance
over a small data set. The scalablity is another important
issue when we apply those methods to real world problems.
Figure 7 gives the number of iterations cross entropy and
maximum entropy need to converge. For each iteration, we
need one scan of matrix A (bounded by the number of miss-
ing values n and the number of constraints m). Both CPU
cost and I/O cost may be very high due to the largeness of
A.
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Figure 5: Accuracy (RErr) comparison of SVD with dif-
ferent constraints over census data set which contains 10
missing cells
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Figure 6: Accuracy (SSE) comparison of SVD with different
constraints over census data set which contains 10 missing
cells
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Figure 7: Iterations of different methods

There has been work for large scale linear programming
techniques [2; 38] in mathematics field. [2] present the SVD
techniques over large scale and sparse matrix (O(10°) rows
or columns). The traditional methods [3; 14] for comput-
ing the SVD of dense matrices are not optimal for large
sparse matrices such as missing imputation application. [38]
presents the heuristic techniques to solve linear program-
ming problems with tens of millions of constraints in a few
hundred variables.

5. RELATED WORK

Data cleansing deals with detecting and removing errors and
inconsistence from data in order to improve the quality of
data. The anomalies involved in data cleansing include: in-
correct attribute values, duplicate records, missing values,
schema differences among multiple sources etc. While there
has been work on schema translation and schema integration
[22; 1], on duplicate identification and elimination [19], on
general data cleansing framework such as AJAX [11], Pot-
ter’s Wheel [33], and IntelliClean [24], missing values have
received very little attention in the research community.

In statistics, the methods of handling missing data can be
grouped into two broad classes. One is data deletion, i.e.,
ignoring the records with missing values during the analysis.
Sometimes, ignoring a certain part of the data may result
in the data being biased. Another way of treating missing
values is substitution. The substitution methods are well
studied in statistics field and some popular approaches such
as Mean substitution, Regression methods, Hot deck impu-
tation, Expectation Maximization (EM) approach, Multiple
imputation etc. are well developed in statistical literature
[25; 18]. However those approaches deal with almost exclu-
sively with parameter estimation rather than missing value
prediction [25]. For example, multiple imputation represents
the missing values as a random sample and computes sta-
tistical inferences which properly reflect the uncertanity due
to the missing values.

In data mining and data warehousing field, techniques for
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imputation of missing values range from stand alone tech-
niques such as using the mean or median of related values
(e.g., cells whose coordinates differ from the missing value in
just one of the dimension values) to using regression [39] or
probabilistic inference such as Markov Chain Monte Carlo
methods (MCMC) [28]. The first method [39] involves us-
ing a two-part mixture model, which combines the logistic
model and loglinear model together, to predict and impute
the missing values. The logistic model is applied to predict
positions of non-zero cells in the missing cell list while the
loglinear model is applied to compute the estimation. The
last method [28] involves using a probabilistic model such
as a belief network, combined with sampling to avoid the
prohibitive price of estimating the probability distributions.
The samples are used to obtain Monte Carlo estimates for
the expectations of functions of the variables involved.
Conditional tables were proposed in [21] to handle incom-
plete information in relational databases. The conditional
table is an extension of a table with one more column con-
taining logical formulas attached with the tuples of the re-
lation. The new table is a relation with constant and vari-
ables in which no variable occurs twice. Materializing the
conditional table usually generates many tables. For the
missing continuous attribute values, it is unknown how to
apply conditional table techniques to estimation. The rule
induction techniques such as decision tree [31; 32], decision
tables [17; 18] are studied to predict the value of the missing
attribute based on the values of the other attributes in that
tuple. However, techniques based on rule induction mod-
els can only handle missing data for categorical attributes
with low cardinality domains (few values). Recently, in [30],
Prodromidis and Stolfo propose the prediction of attributes
in a database schema using an auxiliary classifier, or more
accurately, a prediction model. Such prediction model can
be built for example using regression methods (e.g., Cart
[4; 27; 10]). This is done in [30] to “bridge” the differences
between different schemas in the context of integrating clas-
sifier agents.

Some work has investigated the inconsistency between sum-
mary information and low level raw data. Chin and Kos-
sowski, in [6], presented an efficient inference control (called
auditing) for one dimensional range sum queries on statisti-
cal databases. Based on all previous answered queries, they
developed an algorithm (O(n) time and storage) to decide
whether a new sum range query could lead to compromise.
The auditing problem can be thought as an inverse one to
our problem. In this paper, we aim to discover the miss-
ing values from all available summary data by applying lin-
ear algebra, entropy, or constraint programming technique
and the summary data here is associated with multidimen-
sional range. Faloutsos et al., in [9] focused on recovering de-
tailed information from summary data (under-constrained)
by maximizing entropy where all detailed data are unavail-
able.

6. CONCLUSIONS

In this paper, we describe our efforts to recover the miss-
ing values by utilizing the summary constraints. We inves-
tigate different techniques (SVD, maximum entropy, cross
entropy, and constraint programming) and bring to bear on
problems in recovering missing values when some summary
information are available. We classify the missing values
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problem into three sub-scenarios: ideal-constrained, under-
constrained, and over-constrained. The simple method SVD
from linear algebra is applicable to reconstruct missing val-
ues by solving linear constraint equations. This method
gives more accurate estimation than the traditional methods
(without using constraints) especially when the number of
independent constraints are close to the number of missing
cells in under-constrained case or larger than the number of
missing cells in over-constrained case.

We also investigate maximum entropy and cross entropy
techniques to reconstruct missing values. The cross entropy
technique even improves the estimates if the relatively ac-
curate estimates of the missing values are available as input
parameters. The experiment results done over the census
data set support the claim that by utilizing the constraints
we do improve the accuracy of estimates. Furthermore, we
investigate the constraint programming technique to answer
users’ query on the fly with a tighter bound.

There are some aspects of this work that merit futher re-
search. Among them,

e We are trying to investigate the scalablity issues. As
all the methods (SVD, maximum entropy, cross en-
tropy and constraint programming) are iterative in es-
sential, it is prohibitive to apply those methods di-
rectly . One idea we are experimenting is to divide the
data set into chunks and each chunk (fitted in mem-
ory) is associated with its own missing values and con-
straints. Of course, we will lose some accuracy as some
cross-chunk constraints have to be discarded.

e We will investigate how to combine the traditional
modeling techniques with summary constraints espe-
cially for under-constrained case.

e We will also investigate techniques when the dimen-
sion attributes have some missing values as shown by
Tuple 3 and 4 in Figure 1. We will study the pat-
tern of missingness among continuous dimensions and
their relationships to the categorical ones. One specific
technique for joint modeling and imputation of incom-
plete categorical and continuous attributes is the gen-
eral location model [34] which combines a) a loglinear
model for describing relationships among categorical
dimensions with b) a multivariate linear regression for
describing the correlations among continuous dimen-
sions and their relationships to the categorical ones.
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