Feature Engineering for a Gene Regulation Prediction Task

George Forman
HP Labs, Palo Alto, CA

ABSTRACT

This paper describes an approach that won honaable mention
for the gene regulation prediction task of the 2002 KDD Cup
competition [1]. Our methoddogy used extensive aoss
validation to drea the seach for an appropriate problem
representation and the seledion d an ‘off-the-shelf’ induction
algorithm. A prominent trait of the dataset is the presence of
three hierarchicd attributes, for ead of which we generated a
novel predictive feaure: the percentage of positives
hierarchicaly aggregated at the node spedfied by the instance

Keywords

Madine leaning, hierarchicd attributes, bioinformatics.

1. INTRODUCTION

In contrast with most of the machine leaning benchmark
datasets, much o the ddlenge of this yea's KDD Cup
prediction contest was in determining how best to represent the
avalable data—as is often the cae with company-internal
prediction tasks we facein the Data Mining groupat HP Labs.

A companion paper in this issue [1] describes the competition,
the available data, and the @mmpetitors' results. Due to space
limitations, we must assume the reader is famili ar with the task.
The purpose of this paper is to explain ore of the gproaches
that achieved honaable mention. The take-away messges
beyond the mpetition itself include the methoddogy
employed and an approach for representing nominal attributes
having a hierarchicd relationship among the values.

Sedion 2 describes the methoddogy and phil osophy guiding the
work. Sedion 3presents our fedure engineaing. Sedion 4lists
thefinal choiceswe made. Sedion 5summarizes.

2. METHODOLOGY & PHILOSOPHY
Since the mntest score is the sum of the performance on the
narrow and kroad prediction tasks, we optimized for eah
independently.

In order to fadlitate an efficient search for the best prediction
model, we leveraged a Perl software framework we had
previously developed. It enables us to focus our effort on
quickly prototyping a variety of fedure engineaing options. It
provides an automated processto perform feaure seledion and
induction performance testing using stratified crossvalidation.
Rather than measuring acarracy, we extended it to evaluate the
same performance measure used to judge the cntest: areaunder
the ROC curve. Using this framework and four 600-800 MHz
CPUs, we were ale to quickly measure the performance for
many configurations. Indwction agorithms that we trialed
included the WEKA open-source implementations of Naive
Bayes, linea kernel Suppat Vedor Machines (SVM), and
AdaBoosted dedsion stumps [5]. The feaure seledion methods
trialed were Information Gain, Bi-Normal Separation [2] and
variants. Because the framework provides for feaure selection
(within eat crossvalidation fold), we need na troube
ourselves with manually eliminating useless feaures, but only

with designing feaures that may be predictive, as discussd in
the next sedion.

To consider the dossproduct of the entire design spaceis not
feasible, however, automated testing of portions of the space
gives much more visibility of the seach terrain to the person
guiding the eploration. Crossvalidation helps mitigate, but
canna eliminate, the possbility of overfitting the data
Likewise, adthowh SVMs are popuarly touted for their
theoreticd guarantees against overfitting [4], their wide margin
only exists in a feaure spacethat is arbitrarily malleable when
reformulating the problem representation [6]. Nonetheless we
attempted to optimize average performance on stratified cross
validation samples of the avail able training data.

The guidance drawn from crossvalidation testing is constrained
somewhat by large variance For example, in the narrow task
with just 38 paitive examples, a stratified 10fold split yields
just 3.8 pasitives on average in the testing fold, leading to wide
variance in the performance etimation. To compensate, we
perform a large number of randamized trials (e.g. 20-100 as in
boastrapping), rather than 10asin traditional crossvalidation.

We simplified management of the voluminous and dstributed
performance data by appending al results to a single database
table, columns capturing al parameters of the test conditions.
We muld easily determine leading configurations with our Perl
toals or with interadive pivot chartsin Excd.

3. FEATURE ENGINEERING

Next we discuss our fedure engineging from the three
hierarchicd attributes, the interadion graph, the textual
abstrads, and the gene names themselves.

Hierarchical Attributes: Given a nomina attribute whose
values can be hierarchicdly aggregated with a known tree a
natural representation is to generate abinary feaure for eah
nocein thetree—set to ‘1’ only on the path to the aurrent value.
(We tred the many missng values as a separate top-level noce)
We generated 494 such feaures, and many were predictive, but
we were dissatisfied with how dispersed the informationisin the
large hierarchies. Only afew nodes contained pasitives at all.

To remedy this, we engineaed additional hierarchy prevalence
feaures for ead hierarchicd attribute. Optional step 1. We
pruned away nodes for which there ae no instances in the
contest’s testing set, which we refer to as transductive pruning.
It isin the spirit of transductive learning [4], which focuses the
modeling task on the spedfic examples to be labeled and dces
not use information from the answer key. This eliminated 200+
nodes. Step 2 We generated two percentage-valued fedures:
given the dtribute value, we return the percentage preval ence of
positives (vs positives & negatives) found in the lowest and
highest node in the path of the pruned tree For example, a gene
with function attribute= mRNA synthesis would have the value
1/41 for the low attribute, and 280 for the high attribute, since
there ae just two pasitives out of 80 genes at or under the top-
level node ‘Transcription’. A value of 0% indicaes that no

positives ever had the arrent attribute value. Withou this
feaure, it would be much harder (more data) for an induction
algorithm to lean to ‘or’ together the 230 mutually exclusive
‘function’ nodes that contain no paitive examples.

Interaction Graph: The undreded interadion graph lists
asociated genes. We generated a simple integer fedure that
indicaes for a given instance, the number of genes it interads
with. Thiswas a strong predictor for the broad task.

A natural feaure egineaing approach for this wrt of
interadion information is to dugicae the feaure set, copying
the feaures for the gene(s) it interads with. Sincethe motivation
boils down to a hurch that the prediction d the assciation
helps predict the instance (as in relationa leaning), and sincein
this contest the set of ultimate test instancesis snall and fixed, it
seaned more straightforward to generate a single additiond
feaure that modeled this assumption dredly. So, we generated
just two additional integer feaures indicaing the number of
narrow and kroad pasitives the gene interads with (determined
only from those known pgsitive in the aurrent training split).
This feaures proved lessvauable, yet somewhat predictive.

Textual Abstracts: For eath gene, we ncaenated all
pertinent abstrads as determined by gene-abstrads.txt, and
generated a binary fedure for ead urique (lowercased,
alphanumeric) word. Having to load/process the 18 MB of
abstrads increased the run time from 7 seconds to 50 seoonds,
and, unfortunately, tended to degrade prediction acaracy
overall.

Gene Names. We suppased that the naming of the genes, e.g.
YMR228W, was generated by a nonrandom process that may
have some beaing on the prediction tasks at hand. We generated
anumeric feaure for the number, and kinary feaures for various
sub-sequences of charaders. Asit turns out, for the narrow task,
the second and third charaders together are (negatively)
predictive: ‘nl’ is among the strongest predictors (appeaing in O
positives and 158 mgatives), followed by ‘gr’ and ‘pl’. These
were not very strong predictors overal, so we do nd believe
they lesed information from the answer key ill egitimately.

4. FINAL CHOICES

In the end, our best average predictor for the narrow task was
Naive Bayes on just twelve feaures, including the percent
positives at the top and bdtom of the three unpruned
hierarchies, the three interadion feaures (made binary), and
gene name substrings ‘nl’ and ‘n’. Its estimated performance
when training on 90% of the available training data was 0.67
ROC area and when trained on 1004 of the data, 0.6731 onthe
contest test set.

Our best average predictor for the broad task was Naive Bayes
on 48 fedures, including the top and bdtom hierarchicd
prevalence fedures for the three transductivdy pruned
hierarchies, the threeinteradion feaures (but not made binary)
plus binary indicaors for several of the hierarchy nodes, e.g.
locdizaion=transport vesicles / golgi ER transport vesicles,
function=clasdfication nd yet clea cut, function=cdl rescue
defense and virulence, and protein class=protein phosphatases /
caalytic suburits / PP2C family. The latter is a positive
predictor with two pasitives and two negatives, but most
feaures were negative predictors. Its estimated performance on
90% of the training data was 0.59, and 06295in the cntest.

While we exped some variance, it is difficult to estimate how
much, given that we can generate only highly correlated
samples. By plotting the leaning curve & we vary the
percentage of training data, and extrapolating the performance
for % of the training data, we etimated an additiona ~+.007
ROC areafor both tasksin the final contest. After seeng the low
ROC scores, we wished to validate the competition following
[3]. A randamized dstribution analysis of al the ontestants
scores validated that they are significantly better than arandam
colledion d simple dassfiers.

5. CONCLUSIONS & TAKE AWAYS

No amourt of clever induction a feaure seledion can make up
for a lack of predictive feaures in the inpu. Hence fedure
engineaing is a key step for difficult prediction tasks. We
estimate via a cossvalidation lesion study that credive feaure
engineging was resporsible for adding +11% to the
performance (+0.08 and +0.06 ROC areafor narrow and tkroad
tasks).

Likewise, extensive use of automated crossvalidation to guide
the seach for an effedive model added immeasurable benefit
over seleding a single model ‘blind,” which is the only method
that can safely be said to avoid overfitting. Even structural risk
minimization techniques sich as SVM [4] canna safeguard
against ‘overfitting' the feaures to the dataset [6]. Nonetheless
experience shows that feaure engineaing is generally a
worthwhil e risk, and crossvalidation helps miti gate the risk.

Perl again proved an excdlent language for quick prototyping—
minimizing human programming effort rather than CPU time.
Although C is often chosen for being faster, the overall running
time was very acceptable & under a minute per data point on an
800MHz HP Kayak XU running Linux—despite the
inefficiencies on ead run o re-parsing 19+ MB of inpu data, &
launching a separate Java process runring the WEKA machine
leaning algorithms, communicaing via generating/parsing fil es.

6. ACKNOWLEDGMENTS
We wish to thank Bin Zhang, Jag Suermond, and WEKA.

7. REFERENCES

[1] Craven, Mark. The Genomics of a Signaling Pathway: A
KDD Cup Challenge Task. KDD Explorations 4(2), 2002

[2] Forman, G. An Extensive Empiricd Study of Fedure
Seledion Metrics for Text Clasdficaion. J. of Machine
Leaning Reseach, forthcoming in 2002

[3] Forman, G. A Method for Discovering the Insignificance
of One's Best Classfier and the Unleanability of a
Classficaion Task. DMLL Workshop, ICML, 2002

[4] Vapnik, V. The Nature of Statisticd Leaning Theory,
1995

[5] Wekamacdhineleaning projed, www.cs.waikato.acnz/ml

[6] Zhang, B. Isthe Maximal Margin Hyperplane Speda in a
Feaure Space? Hewlett-Packard Labs Tech Report HPL-
200189, 2001

About theauthor:

George Forman is a reseach scientist at HP Labs in the Data
Mining Group. Hereceved his CS Ph.D. from the University of
Washington. http://www.hpl.hp.com/personal/ George_Forman

