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ABSTRACT

In this paper, we outline the main steps lealing to the
development of the winning solution for Task 2 of KDD Cup
2002 (Yeast Gene Regulation Prediction). Our unusua solution
was a par of linea classfiers in high dmensiona space
(~14,000, developed with just 38 and 84 training examples,
respedively, al belonging to the target classonly. The dassfiers
were built using the suppat vedor machine gproach outlined in
the paper.
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1. INTRODUCTION

The Yeast Gene Regulation Prediction data, Task 2 of KDD Cup
2002 was heavily unbalanced, with 38 and 84 ‘target’ class
examples only out of the total of 3018 examples in the training
set. Most machine leaning procedures for developing a
discrimination in such a data will require some sort of re-
balancing of the priors, i.e., boaosting the impaa of examples from
the minority class combined with diminishing the impad of
examples from the majority class Using crossvalidation onthe
training set we have foundthat the optimal solution for our setting
is obtained in the extreme cae, when the mgority class is
completely eliminated.

In this dhort paper, we present some details of our submisson,
including spedfics of data representation and classficaion
procedure & well as ome results of crossvali dation tests.

2. DATA REPRESENTATION

Ead training and test gene was represented by a vedor of binary
attributes extraded from the data sources provided. Attributes
were extraded by using only the entries from the data sources
correspondng to the training genes.

¢ Hierarchicd information abou function, protein classes and
locdi zaion was converted to a vedor per gene. For instance,
the foll owing two entries in the fil e function.txt

YGRO72W cytoplasm | SUBCELLULAR LOCALISATION
YGRO72W nucleus | SUBCELLULAR LOCALISATION

yielded three function attributes: “cytoplasm”, “subcellular
localization” and “nucleus’ each with a value of 1 for the
gene “YGRO72W". This processng creaed 409attributes: 42
for locdizaion, 213 for gene function and 154for protein
classs.

¢ Textua information from al abstrads associated with a gene
was converted to ‘word token’ presence vedors (‘a bag of
words). A ‘word token’, in this context, is understood as any
string of alphanumeric charaders, which may and may not
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correspondto an ordinary word. Word tokens correspondng
to words in a standard list of stop words, such as “the”, “a”
and “in", have been excluded. All ordinary words were
stemmed wsing a standard Porter stemmer. This abstrac
processng resulted in 48829 word token attributes. Around
3/4" of these atributes were subsequently eliminated by
discarding all those that occurred in only one training gene,
and by discarding all those which had atotal frequency that
was greder than ore standard deviation from norm. After
this processng, we were left with 12480 word token
attributes for the astrads.

e The gene-gene interadion file is ymmetric. Hence ead
entry in the file interadion.txt creaes two attributes. For
instance, the eitry “YFLO39C YMR092C" credes the
interadion attributes “YFLO39C” and “YMR092C", and the
atribute  “YFLO39C” is =t to 1 for the gene “YMR092C”
and viceversa. Procesing of the gene interadions file
yielded atotal of 1,447 attributes.

Thus, the total number of binary attributes used by the leaning
algorithm was 14,336 (= 409+ 12,480+ 1,447).

3. MODEL SELECTION

We have used a linea suppat vedor madine [4] with quedratic
penalty.  This is a dasdfier allocaing to ead data sample

xOR" = R¥33¢ the score f (X) = xOQv+b, where the solution

vedor W R" andthe bias b R are defined as minimisers of
2 3018
o(w,b) = " b2 + 3 C;|min(0, 1-y. x Wy, b) °
i=1

Here x; [0 R" arefeaure vedorsand y; [{*1} are bipolar labels
of the training examples, i=1,...3018. The individual
regularisation constants, C; 20, are defined asC; =CB/n_ if
y; =—1 (the badkground clasg and C; =C(1-B)/n, if
y; = +1 (the target clasg with the balance factor 0< B <land
the regularization constant C = 0Qbeing free parameters, and
n, 0{38,84 and n_ {2934 298¢ denating the numbers of

target and the badkground class examples, respedively. Thus the
smaller the balance fador B, the smaller the impaa of the
badground class and the more promoted are examples from the
minority (target) class In particular, B = 0.5represents the cae
of both classes with even balance of priors (ordinary 2-class
learning); B =0is the extreme cae of leaning from the target
class examples only (1-class learning); B =1is the oppaite
extreme, the cae of leaning from mgjority classexamples only.
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Figure 1: Mean AROC +/- std as a function of balance factor
B (C =5000).

Some results of crossvalidation experiments amed at
‘optimization’ of the balance fador B and the regularizaion
constant C are shown in Figures 1 and 2 The figures show the
mean AROC (areaunder ROC curve) with standard deviation as
an envelope, where the means are computed onthe validation set
over 20 randam splits of data into 70% : 30%, leaning :
validation.

Figure 1 shows the impaad of the balance fador B on acaragy.
We have used C =5000, and the aossvalidation tests are
performed using splits of the training data only. Figure 2 shows
the dfed of the regularization constant C on AROC. Results are
shown for B=0 and B = 0.5, with crossvalidation splits of
the training data only in Figures 2A and 2B and combined
training and test data in Figures 2C and 2D. Based onthe results
in Figures 1, 2A and 2B, the values B =0 and C =5000 were
seleded for the competition submisson. This sledion amourtsto
training ‘hard margin SVM’ with examples from a single (target)
classonly in the 14,336 dmensiona fegure space

An additional point to nde is that crossvalidation estimates of
AROC from the training data axd the cmmbined training + test
data ae very close to ead ather. Thus, in retrosped, the aoss
validation technique for model seledionwas ajustified step.

4. DISCUSSION
Our approach has anumber of distinct feaures.

Automatic pre-processing and large number of features for
classification: We have used a minimal domain knowledge and
passd a large number of fedures to the dasdfier. This follows
from our previous experience in pradicd text caegorisation
systems where laborious manual interventions withou a deg
domain insight often produced mediocre, if any, improvements.

One-class learning: A posshility of one dass leaning (with
SVMs) has been explored previoudy [1,2,3]. In these
experiments, while 1-class models performed reasonably, they
were systematicdly outperformed by models developed using data
from baoth clases. To ou knowledge, the experiments with Y east
Gene data set reported in this paper, is the only case where the
contrary istrue.
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Figure2: Mean AROC +/- std as a function of the
regularization constant C.

We have arived at our 1-class ®lution through systematic
investigation o priors. The open question till is why such a
solution works $ well onthisdata set. Our explanationis that this
is the dfed of a spedfic ‘interadion’ of high dmensiondlity and
sparsity of feaure spacewith the noise in the data. Our recent
experiments with this data aad some other, artificial, data provide
evidencethat this happens for other data sets and classfiers.
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