Applying Data Mining to Intrusion Detection: the Quest for
Automation, Efficiency, and Credibility

Wenke Lee
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280

wenke@cc.gatech.edu

ABSTRACT

Intrusion detection is an essential component of the layered
computer security mechanisms. It requires accurate and ef-
ficient models for analyzing a large amount of system and
network audit data. This paper is an overview of our re-
search in applying data mining techniques to build intrusion
detection models. We describe a framework for mining pat-
terns from system and network audit data, and constructing
features according to analysis of intrusion patterns. We dis-
cuss approaches for improving the run-time efficiency as well
as the credibility of detection models. We report the ideas,
algorithms, and prototype systems we have developed, and
discuss open research problems.

General Terms

Intrusion detection

Keywords

Feature construction, model efficiency, Bayesian detection
rate

1. INTRODUCTION

As the Internet plays an increasingly important role in our
society, criminals and enemies have been devising and launch-
ing sophisticated attacks motivated by financial, political,
and even military objectives. We therefore must protect
our network infrastructure.

Contrary to the myth that there can be a panacea in secu-
rity, no single technology alone is the answer. Security is a
process (or a chain) that is as secure as its weakest link; and
flaws in hardware, software, and networks, as well as hu-
man errors can all lead to security failure [18]. Experience
has taught us that we need to deploy defense-in-depth or
layered network security mechanisms, which include these
necessary technologies: security policy, vulnerability scan-
ning and patching, access control and authentication, en-
cryption, program wrappers, firewalls, intrusion detection
(ID), and intrusion response and tolerance.

An intrusion detection system (IDS) collects and monitors
operating system and network activity data, and analyzes
the information to determine whether there is an attack oc-
curring. There are two major categories of analysis: mis-

SIGKDD Explorations.

use detection and anomaly detection. Misuse detection uses
the “signatures” of known attacks, i.e., the patterns of at-
tack behavior or effects, to identify a matched activity as
an attack instance. By definition, misuse detection is not
effective against new attacks, i.e., those that do not have
known signatures. Anomaly detection uses established nor-
mal profiles, i.e., the expected behavior, to identify any un-
acceptable deviation as the result of an attack. Anomaly
detection is intended for catching new attacks. However,
new legitimate behavior can also be falsely identified as an
attack, resulting in a false alarm. Reports of attacks can
trigger response actions (e.g., termination of the offending
connections) or further investigation by security staff.

Most intrusion detection approaches rely on analysis of sys-
tem and network audit data. Network traffic can be recorded
using “packet capturing” utilities (e.g., 1ibpcap [16]), and
operating system activities can be recorded at the system
call level (e.g., BSM [20]). A basic premise here is that when
audit mechanisms are enabled, distinct evidence of legiti-
mate activities and intrusions will be manifested in the audit
data. In other words, instead of (statically) analyzing (all
source codes of) complex software, intrusion detection uses
a more practical approach of analyzing the audit records of
run-time activities of networks and systems (and users).

At an abstract level, an intrusion detection system (IDS) ex-
tracts features, i.e., the individual pieces of evidence, from
the system event-level or network packet-level audit data,
and uses some modeling and analysis algorithms to reason
about the available evidence. Traditionally, IDSs are devel-
oped by knowledge-engineering. Expert knowledge or intu-
ition of networks, operating systems, and attack methods
are used to select the features and hand-craft the detection
rules. Given the complexities of today’s network environ-
ments and the sophistication of the increasingly hostile at-
tackers, the so-called expert knowledge is often very limited
and unreliable.

On the other hand, data mining approaches can be used
to extract features and compute detection models from the
vast amount of audit data. The features computed from
data can be more objective than the ones hand-picked by ex-
perts. The inductively learned detection models can be more
generalizable than hand-coded rules (that is, they can have
better performance against new variants of known normal
behavior or intrusions). Therefore, data mining approaches
can play an important role in the process of developing an
IDS. We need to point out that data mining should comple-
ment rather than exclude the use of expert knowledge. Our

Volume 4, Issue 2 - page 35

objective should be to provide the tools, grounded on sound
statistics and machine learning principles, for IDS develop-
ers to construct better ID models quickly and easily. For
example, experts can view and edit the patterns and rules
produced by data mining approaches, and translate them
into efficient detection modules.

Not unlike other data mining applications, characteristics of
audit data and requirements of intrusion detection present
both opportunities and challenges to data mining research.
In this paper, we give an overview of the main research is-
sues in applying data mining techniques to build intrusion
detection models. These include extracting and construct-
ing features from audit data, computing efficient models,
and improving the usability and credibility of the detection
models. We describe the ideas, approaches and prototype
systems we have developed over the past couple of years,
and discuss future research directions.

1.1 Redated Work

Several influential research IDSs were developed from mid-
80’s to mid-90’s. STAT [7] and IDIOT (8] are misuse de-
tection systems. NIDES [2] has an anomaly detection sub-
system. These systems and most of the later research and
commercial systems are developed using a pure knowledge-
engineering process.

In recent years, there have been several learning-based or
data mining-based research efforts in intrusion detection.
Warrender et al. [22] showed that a number of machine-
learning approaches, e.g., rule induction, can be used to
learn the normal execution profile of a program, which is
the short sequences of its run-time system calls made. These
learned models were shown to be able to accurately detect
anomalies caused by exploits on the programs. Lane and
Brodley developed machine learning algorithms for analyz-
ing user shell commands and detecting anomalies of user
activities [9]. Ghosh et al. [6] showed that, using program
activity data (e.g., system calls, arguments, return values,
and permissions, etc.) from BSM audit logs, Artificial Neu-
ral Networks can be used to learn anomaly and misuse de-
tection models for system programs. A team of researchers
at Columbia University have been working on data mining-
based intrusion detection since 1996 (see Stolfo et al. [19]
for an overview). The main capabilities developed in this
research include: pattern mining and feature construction,
cost-sensitive modeling for efficient run-time model execu-
tion, anomaly detection, learning over noisy data, and cor-
relation analysis over multiple of data streams. The ADAM
project at George Mason University is developing anomaly
detection algorithms based on automated audit data analy-
sis. (see http://ise.gmu.edu/"dbarbara/adam.html)

2. THE QUEST FOR AUTOMATION

The main motivation of using data mining techniques to
build intrusion detection models is automation. The intu-
ition is that consistent patterns of normal behavior and dis-
tinct patterns of an intrusion can be computed from his-
torical (or training) audit data, and then be used to detect
future instances of the intrusion.

We can think of intrusion detection as a classification prob-
lem, i.e., a problem of labeling or predicting new (unseen)
audit data as belonging to an intrusion class, the normal
class, or the abnormal (probably unknown intrusion) class.

SIGKDD Explorations.

Table 1: The Need for Feature Construction. The original
(standard) features are insufficient to distinguish the “SYN
flood” connections from the normal ones. A specific feature
for detecting “SYN flood” is added.

time | dst | service | flag | ... | %SO class
1.01 | HI | http | SO | .. | 70 | SYNfood
1.01 | H1 | http SO | .. 72 SYN flood
1.02 | H1 | http SO | .. 75 SYN_flood
100.1 | H3 | http S0 | ... 1 normal
351.2 | H5 | http SO | .. 3 normal
632.4 | H1 | http S0 | .. 4 normal

Unlike many data mining applications, the biggest challenge
here is not the development of classification algorithms, but
rather feature extraction and construction.

Audit data is “raw”, i.e., in binary format, unstructured,
and time dependent. For data mining, we need to first pro-
cess audit data to a suitable form, i.e., ASCII tabular data
with attributes (or features). We can borrow standard tech-
niques from other applications, e.g., network modeling and
analysis, for data preprocessing. However, these basic and
standard features are insufficient for the purpose of intrusion
detection. For example, consider the “SYN flood” intrusion
(a Denial-of-Service attack) where the attacker sends a lot
of connection requests within a very short period of time
but does not complete the handshakes, so that the destina-
tion host is forced to keep the requests and use up its buffer
space, and as a result, can no longer service other legitimate
requests. The standard features of the connection records
in Table 1, i.e., timestamp, destination host, service, flag,
etc. cannot distinguish the “SYN flood” connections from
the normal ones. A SO flag means that there is a connection
request but the handshake is not completed. A normal (or
legitimate) connection can have a S0 flag because handshake
packets are sometimes dropped due to temporary network
congestion. However, for connections to the same service
on the same host within a short period of time, if a large
percentage of them have the SO flag, then there is likely a
“SYN flood” attack. Accordingly, we need a feature, %S0,
in the connection data in order to distinguish “SYN flood”
connections from normal ones. The research issue is how to
automatically construct such features.

‘We have developed a data mining framework for construct-
ing features and intrusion detection models [10]. Using this
framework, raw (binary) audit data is first processed and
summarized into network connection records (or host ses-
sion records) containing a number of basic features: times-
tamp, duration, source and destination IP addresses and
port numbers, protocol type, and an error condition flag.
Specialized data mining programs [12; 10] are applied to
compute frequent patterns, i.e., the association rules [1] de-
scribing the correlations among the features, and the fre-
quent episodes [15] describing the frequently co-occurring
events across the records. The consistent patterns of nor-
mal activities and the “unique” patterns associated with in-
trusions are then identified and analyzed to construct addi-
tional features for the records [13]. Machine learning algo-
rithms (e.g., the RIPPER [4] classification rule learner) are

Volume 4, Issue 2 - page 36

models

(ASCII)

connection/
gession
ds T
recof evaluation
feedback

Figure 1: The Data Mining Process of Building Intrusion Detection Models.

then used to learn the detection models. Figure 1 depicts
the iterative process steps of this framework. We next give
an overview of the main components of this framework.

2.1 Pattern Mining and Comparison

We compute the association rules and frequent episodes from
audit data, which capture the intra- and inter- audit record
patterns. These frequent patterns can be regarded as the
statistical summaries of network and system activities cap-
tured in the audit data, because they measure the correla-
tions among system features and the sequential (i.e., tem-
poral) co-occurrences of events.

The basic association rules and frequent episodes algorithms
do not consider any domain knowledge. That is, assume I
is the interestingness measure of a pattern p, then I(p) =
f(support(p), confidence(p)), where f is some ranking func-
tion. As a result, the basic algorithms can generate many
rules that are “irrelevant” (i.e., uninteresting) to the appli-
cation. When customizing these algorithms for audit data,
we incorporate schema-level knowledge into the interesting-
ness measures. Assume Is measures the interestingness of
a pattern p according to the schema-level constraints, our
extended interestingness measure is I.(p) = fe(Is(p), I(p)),
where f. is a ranking function that first considers the schema-
level constraints, then the support and confidence values.
We discuss two kinds of important schema-level knowledge
about audit data here. First, there is a partial “order of
importance” among the attributes of an audit record. Some
attributes are essential in describing the data, while others
only provide auxiliary information. For example, a network
connection can be uniquely identified by the combination
of its start time, source host, source port, destination host,
and service (destination port). These are the essential at-
tributes when describing network data. We call the essential
attribute(s) azis attribute(s) when they are used as a form
of item constraints in the association rules algorithm. Dur-
ing candidate generation, an item set must contain value(s)

SIGKDD Explorations.

of the axis attribute(s). In other words, if p contains axis
attribute(s), then Is(p) = 1, else Ig(p) = 0. To avoid hav-
ing a huge amount of “useless” episode rules, we extended
the basic frequent episodes algorithm to compute frequent
sequential patterns in two phases: compute the frequent
associations using the axis attribute(s); then generate the
frequent serial patterns from these associations.

Another interesting schema-level information is that some
attributes can be the references of other attributes. A group
of events are related if they have the same reference attribute
value. For example, connections to the same destination
host can be related. When mining for patterns of such re-
lated events, we need to use reference attribute as an item
constraint. That is, when forming an episode, an additional
condition is that, within its minimal occurrences, the records
covered by its constituent itemsets have the same value(s) of
the reference attribute(s). In other words, if the itemsets of
p refer to the same reference attribute value, then Is(p) = 1,
else Is(p) = 0.

We can compare the patterns from an intrusion dataset and
the patterns from the normal dataset to identify those that
exhibit only in the intrusion dataset. These patterns are
then used for feature construction. The details of the pat-
tern comparison algorithm are described in [13]. The idea
is to first convert patterns into numbers in such a way that
“similar” patterns are mapped to “closer” numbers. Then
pattern comparison and intrusion pattern identification are
accomplished through comparing the numbers and rank or-
dering the results. We devised an encoding procedure that
converts each pattern into a numerical number, where the
order of digit significance corresponds to the order of impor-
tance of the features. Each unique feature value is mapped
to a digit value in the encoding process. The “distance”
of two patterns is then simply a number where each digit
value is the digit-wise absolute difference between the two
encodings. A comparison procedure computes the “intrusion
score” for each pattern from the intrusion dataset, which is

Volume 4, Issue 2 - page 37

Table 2: Example Intrusion Pattern

Frequent Episode

Meaning

(flag = S0, service = http, dst_host = H1), (flag = S0,
service = hitp, dst_host = H1) — (flag = S0, service =
hitp, dst_host = H1) [0.93,0.03, 2]

93% of the time, after two http connections with
S0 flag are made to host wvictim, within 2 seconds
from the first of these two, the third similar con-
nection is made, and this pattern occurs in 3% of
the data

its lowest distance score against all patterns from the normal
dataset, and outputs the user-specified top percentage pat-
terns that have the highest intrusion scores as the “intrusion
only” patterns.

As an example, for the “SYN flood” attack, Table 2 shows
one of the top intrusion only patterns, produced using service
as the axis feature and dst_host as the reference feature.

2.2 Feature Construction

Each of the intrusion patterns is used as a guideline for
adding additional features into the connection records to
build better classification models. We use the following au-
tomatic procedure for parsing a frequent episode and con-
structing features:

o Assume Fy (e.g., dst) is used as the reference feature,
and the width of the episode is w seconds.

e Add the following features that examine only the con-
nections in the past w seconds that share the same
value in Fy as the current connection:

— A feature that computes “the count of these con-
nections”;

— Let Fy be service, src, or dst other than Fy (i.e.,
Fy is an essential feature). If the same F; value
is in all the item sets of the episode, add a fea-
ture that computes “the percentage of connec-
tions that share the same F value as the current
connection”; otherwise, add a feature that com-
putes “the percentage of different values of Fi”.

— Let V; be a value (e.g., “S0”) of a feature F (e.g.,
flag) other than Fy and F; (i.e., V> is a value of a
non-essential feature). If V5 is in all the item sets
of the episode, add a feature that computes “the
percentage of connections that have the same V5”;
otherwise, if F3 is numerical, add a feature that
computes “the average of the Fy values”.

This procedure parses a frequent episode and uses three op-
erators, count, percent, and average, to construct statistical
features. These features are also temporal since they mea-
sure only the connections that are within a time window w
and share the same reference feature value. The intuition
behind the feature construction algorithm comes from the
straightforward interpretation of a frequent episode. For ex-
ample, if the same feature value appears in all the itemsets
of an episode, then there is a large percentage of records
that have the same value. We treat the essential and non-
essential features differently. The essential features describe
the anatomy of an intrusion, for example, “the same service
(i.e., port) is targeted”. The actual values, e.g., http, is of-
ten not important because the same attack method can be
applied to different targets, e.g., ftp. On the other hand, the

SIGKDD Explorations.

70

50 | 4

<5} H = n
& a0l 1
= i
S i .
§ 30 4 Columbia <—
2 . Groupl -
Group3 =
20 4
10 B
° 0.05 1 0.15 0.2
) False A?érm Rate . :

Figure 2: The Overall Detection Performance

actual non-essential feature values, e.g., flag = S0, often in-
dicate the invariant of an intrusion because they summarize
the connection behavior according to the network protocols.
The “SYN flood” pattern shown in Table 2 results in the
following additional features: a count of connections to the
same dst in the past 2 seconds, and among these connec-
tions, the percentage of those that have the same service,
and the percentage of those that have the “S0” flag.

2.3 Evaluation and Discussion

‘We participated in the official 1998 DARPA Intrusion Detec-
tion Evaluation [14]. We applied our data mining framework
to construct features and intrusion detection models using
the 7 weeks of labeled training data. We then used the mod-
els to make predictions on the 2 weeks of unlabeled test data
(i.e., we were not told which connection is an attack). The
test data contains a total of 38 attack types, with 14 types
in test data only (i.e., our models were not trained with in-
stances of these attack types, hence these are considered as
“new” attack types). We briefly report the performance of
our detection models as evaluated by MIT Lincoln Lab [14]
(see [11] for more detailed results). Figure 2 shows the ROC
curves of the detection models on all intrusions. We compare
here our models with other participants (denoted as Group
1 through 3, group 2 did not cover all intrusions) in the
DARPA evaluation programl. These participating groups
used pure knowledge engineering approaches. We can see
from the figure that our detection model has the best overall
performance, under the “acceptable” false alarm rate (under
0.02%). However, an overall detection rate of below 70% is
hardly satisfactory in a mission critical environment.

There are still many open issues in this research. The most
important and challenging one is a general approach for
constructing anomaly detection models (which are the only
means to detect new intrusions). Unlike the problem of

!The tested systems produced binary output, hence, the
ROC’s are not continuous. In fact, they should just be data
points, one for each group. Lines are connected for display
and comparison purposes.

Volume 4, Issue 2 - page 38

building misuse detection models, where the focus is on find-
ing a few intrusion-specific patterns and features, construct-
ing anomaly detection models entails finding comprehensive
sets of patterns and features often without the help of exam-
ple intrusion data. Approaches thus far are all developed for
specific problems (e.g., modeling program execution). An-
other issue is that our data mining algorithms compute only
the frequent patterns of connection records. Many intru-
sions, e.g., those that embed all activities within a single con-
nection, do not have frequent patterns in connection data.
Some of these intrusions have frequent patterns in packet
data. However, there is no fixed format of packet data con-
tents, and hence we cannot use our (attribute-based) data
mining programs. Free text mining algorithms are needed for
packet data. Still, some of these intrusions involve only a sin-
gle event (e.g., one command), and hence leave no frequent
patterns even in packet data. Thus, we need algorithms
capable of mining rare and unezpected patterns for these in-
trusions. An important issue is the usability of our data
mining programs. Without system support, the iterative
process shown in Figure 1 is slow and labor-intensive even
when each step is supported by data processing and mining
programs. We have developed a system, “an analyst’s work-
bench”, that semi-automates this process by chaining these
steps and integrating the relevant tools and algorithms into
a single system [10; 11]. Using the patterns, features, and
detection model computed by the system, a developer(s) can
gain an understanding of the new attack, and can “drive”
the system, for example, adjust parameters for a new it-
eration, to produce an effective detection model. We need
to investigate how to use sampling (e.g., [17]) to reduce the
size of input data, while maintaining its temporal and sta-
tistical characteristic, so that the modeling process can be
more efficient. We also need to develop heuristics for iter-
ations so that an optimal model can be produced without
exhaustively searching through the parameter spaces.

3. THE QUEST FOR EFFICIENCY

Auditing mechanisms are designed to record all network and
system activities in great details. While this ensures that no
intrusion evidence will be missed, the high-speed and high-
volume data stream requires the run-time execution of de-
tection models be very efficient. Otherwise, the long delay
in data analysis simply presents a time window for attacks
to succeed. The challenge for data mining is to develop
techniques to compute detection models that are not only
accurate but also efficient in run-time ezecution. The effi-
ciency of a detection model is measured by its computational
cost, which is derived mainly from the time cost of comput-
ing the required features. The feature cost includes not only
the time required for computing its value but also the time
delay of its readiness (i.e., when it can be computed). We
describe two approaches for building efficient models below.

3.1 A Multiple Model Approach

Fan et al. developed a multiple model approach [5]. The
main idea is to compute a few models with increasing com-
putation costs and higher accuracy. In run-time, the low
cost models are always used first, and high cost models are
used only when the low cost models cannot predict with
sufficient accuracy. Using network connection data as an
example, we partition features into three relative cost lev-
els. Level 1 features, e.g., service, are computed using at

SIGKDD Explorations.

most the first three packets (or events) of a connection (or
host session). They normally require only simple recording,.
Level 2 features are computed in the middle or near the end
of a connection using information of the current connection
only. They usually require just simple book keeping. Level
3 features are computed using information from all connec-
tions within a given time window of the current connection.
They are often computed as some aggregates of the level 1
and 2 features. We assign qualitative cost values based on
empirical studies: level 1 cost is 1 or 5; level 2 cost is 10;
and level 3 cost is 100.

In the training phase, we use multiple training sets 71, ..., T4
with different feature subsets. 71 uses only cost 1 features.
T> uses features of costs 1 and 5, and so forth, up to T4,
which uses all available features. Rulesets Ri,..., R4 are
learned using their respective training sets. The precision
pr is computed for every rule, r, except for the rules in Ry.
A threshold value 7, is obtained for every class. It is the
precision of the corresponding rule in R4 because we want
the predictions made by other rulesets be as good as R4. In
real-time execution, R; is evaluated first and a classification
c is made. If p, > 7, the prediction c is final. Otherwise,
additional features required by R;+1 are computed and R;+1
is evaluated. This process continues until a final prediction
is made.

We evaluate this approach using the 1998 DARPA dataset.
Our results [5] show that compared with a single model ap-
proach (that uses whatever features are needed regardless
of the costs), the multiple model approach achieves a 95%
reduction in terms of computational cost while maintaining
a very similar accuracy.

3.2 Cascaded Detection Modules

In a recent study in real-time face detection, an application
domain that bears similarities to intrusion detection, Viola
and Jones proposed to use cascaded modules to speed up the
detection process [21]. The main idea is to use successively
more complex detection modules where simpler modules can
quickly filter out obvious non-objects (e.g., background re-
gions) so that the subsequent and more complex modules
can focus on the more promising regions of the image. We
can use this idea to build cascaded intrusion detection mod-
ules, as shown in Figure 3(a). As data enters the cascade
and is analyzed by a detection module, only the portion de-
termined as likely intrusive, or simply, interesting, is passed
for further analysis at the next layer (by a more complex
module). This approach can lead to much improved run-
time efficiency because only a tiny portion of the audit data,
i.e., the likely intrusion data, needs to be processed by the
compute-intensive (final) detection module. Unlike our mul-
tiple model approach, here the simpler modules are not re-
quired to make predictions on the intrusions. They only
need to filter out the normal data.

The detection modules are independent and usually use dif-
ferent detection algorithms and features. The detection rate
of a cascade of N detection modules is the product of the
detection rates of the individual modules, i.e., [T, P;(A|I).
Likewise, the false alarm rate is vazl P;(A|-I). 1t is obvi-
ous that each detection module needs to have a very high
detection rate. For example, if there are a total of five mod-
ules and each has a detection rate of 99%, then the overall
detection rate is just about 95%. In general, a detector with
a high detection rate will also have a high false alarm rate.

Volume 4, Issue 2 - page 39

more detection

E v
o

data

(a) Cascaded Detection Modules

Local Response

Alerts

\ Alerts from IDSs \

Alert Correlation/Plan Recognition

Event Analysis

Event stream

Data Preprocessing

Filtered packet stream

Data Capturing/Filtering

Packet stream

Network Interface

(b) Layered IDS Architecture

\ Global Alerts

Global Response

Figure 3: (a) In a cascade of detection modules, only the “likely” intrusion data is passed from one (simpler) module to the
next (more complex) module. (b) In a layered IDS, data is processed at the appropriate semantic levels.

However, when the detectors are cascaded together, the re-
sulting overall false alarm rate can be very low. For exam-
ple, if the five modules each has a false alarm rate of 10%,
then the overall false alarm rate is 10 °. In other words,
by building each detection module in the cascade to have a
very high detection rate at the expense of a high positive
rate, which is not an impossible task, we can have a highly
efficient intrusion detection model with high detection rate
and low false alarm rate.

The key research issue for data mining is how to select the
appropriate features for constructing a detection module
that is more comprehensive than the one in the previous
layer. We are in the process of designing and implementing
cascaded intrusion detection modules for network data, and
will report our findings in the near future.

4. THE QUEST FOR CREDIBILITY

Let I and —I denote the intrusive or non-intrusive (or, nor-
mal) behavior, and A and —A denote the presence or absence
of an intrusion alert from the IDS. The most commonly used
IDS performance metrics are the detection rate P(A|I) and
false alarm rate P(A|-I). From a usability point of view,
a critical performance measurement is the Bayesian detec-
tion rate [3] P(I|A), i.e., the probability that an intrusion
is present when the IDS produces an alert. It measures
IDS credibility because it indicates how likely an intrusion
is present when there is an alert. Using Bayes’ theorem, it
can be computed as [3]:

P(D)P(AT) "
(T)YPCATT) + P(~1) P(A]-)

P(1]4) = 3

Although a higher detection rate and lower false alarm rate
will lead to a higher Bayesian detection rate, as pointed out
by Axelsson, if the base rate (i.e., the probability of intru-
sion data), P(I), is extremely low, say 2 x 10™°, then even
with a perfect detection rate, P(A|I) = 1, and a perhaps
unattainably low false alarm rate, say P(A|-I) =1 x107°,

SIGKDD Explorations.

the Bayesian detection rate is only 66% [3]. Axelsson con-
cluded that there is no way for an IDS to have an accept-
able Bayesian detection rate because in a typical network
the frequency of intrusion data (i.e., the base rate) in the
huge amount of (raw) audit data is extremely low. It is also
obvious that applying a new detection algorithm or a new
model generation approach (e.g., data mining) alone is not
likely to solve this problem, unless one can guarantee that
P(A|-I)=0.

The key to improve the Bayesian detection rate is to in-
crease the base rate of the data stream analyzed by the
complex detection module(s). This requires a layered IDS
architecture as shown in Figure 3(b). Here, data processing
and analysis tasks are carried out at the appropriate seman-
tic levels where the base rates are much higher than in the
raw audit data. At the lowest level, the network interface
receives network traffic data. The data capturing and filter-
ing unit then selects only a portion of the traffic according
to the IDS configuration policy. The packet data is then
pre-processed (e.g., re-assembled to connection data), and
only the important events (e.g., a new connection is estab-
lished) or suspicious events (e.g., an attempted connection to
a closed port) are extracted. The event analysis engine then
uses an intrusion detection algorithm(s) to piece the event
data together and produces an alert when it believes that
an intrusion is occurring. Alerts can trigger local response,
and can be sent to a global correlator for cross-checking with
other IDSs, and for analysis of distributed attacks and long-
term attack plans (or scenarios).

The layered IDS architecture presents opportunities for data
mining. For example, a research issue is developing cluster-
ing techniques for alert correlation or reduction. An IDS
can generate a large number of alerts for a single attack.
Multiple IDSs on the network (if so configured) can all re-
port the same attack. Alert correlation can reduce the num-
ber of intrusion reports that an security staff needs to han-
dle, thus improving the usability and credibility of the IDS.
Another research problem is developing techniques similar

Volume 4, Issue 2 - page 40

to link analysis for analyzing attack plan, which is a se-
quence of related attacks that together accomplish an end-
goal. Grouping the individual attacks into attack plans helps
the security staff gain a better understanding of the network
state and take proactive response actions, while significantly
lowering their workload.

5.

SUMMARY

Intrusion detection is a real-world application critical to the
well-being of our society. In this paper, we have given an
overview of our research in applying data mining techniques
to intrusion detection. We have described a framework for
mining patterns from audit data and constructing features
based on analysis of intrusion patterns. We have discussed
approaches for improving the run-time efficiency of detection
models. We have also outlined techniques for improving IDS
credibility.

We have pointed out throughout the paper that there are
still many open problems and research opportunities. We as
researchers must take up these challenges, and make contri-
butions to both data mining and intrusion detection.

6.

This research has been supported in part by DARPA (F30602-

ACKNOWLEDGMENTS

96-1-0311 and F30602-00-1-0603) and NSF (CCR-0133629).
Many thanks to Sal Stolfo and members of his Columbia
research team for all the guidance and helps. We also wish
to thank all the open-minded researchers in security and data
mining who gave us encouragements and good suggestions
at the early stage of our research.

7.
(1]

[2]

3]

[4]

REFERENCES

R. Agrawal, T. Imielinski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases. In
Proceedings of the ACM SIGMOD Conference on Man-
agement of Data, pages 207-216, 1993.

D. Anderson, T. Frivold, and A. Valdes. Next-
generation intrusion detection expert system (NIDES):
A summary. Technical Report SRI-CSL-95-07, Com-
puter Science Laboratory, SRI International, Menlo
Park, California, May 1995.

S. Axelsson. The base-rate fallacy and the difficulty of
intrusion detection. ACM Transactions on Information
and System Security, 3(3), 2000.

W. W. Cohen. Fast effective rule induction. In Ma-
chine Learning: the 12th International Conference,
Lake Taho, CA, 1995. Morgan Kaufmann.

Wei Fan, Wenke Lee, Sal Stolfo, and Matt Miller. A
multiple model cost-sensitive approach for intrusion de-
tection. In Proceedings of The Eleventh European Con-
ference on Machine Learning (ECML 2000), Lecture
Notes in Artificial Intelligence No. 1810, Barcelona,
Spain, May 2000.

A. K. Ghosh and A. Schwartzbard. A study in using
neural networks for anomaly and misuse detection. In
Proceedings of the 8th USENIX Security Symposium,
August 1999.

SIGKDD Explorations.

[7]

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

K. Ilgun, R. A. Kemmerer, and P. A. Porras. State
transition analysis: A rule-based intrusion detection
approach. IEEE Transactions on Software Engineering,
21(3):181-199, March 1995.

S. Kumar and E. H. Spafford. A software architecture
to support misuse intrusion detection. In Proceedings
of the 18th National Information Security Conference,
pages 194-204, 1995.

T. Lane and C. E. Brodley. Temporal sequence learning
and data reduction for anomaly detection. ACM Trans-
actions on Information and System Security, 2(3):295—
331, August 1999.

W. Lee. A Data Mining Framework for Constructing
Features and Models for Intrusion Detection Systems.
PhD thesis, Columbia University, June 1999.

W. Lee and S. J. Stolfo. A framework for construct-
ing features and models for intrusion detection systems.
ACM Transactions on Information and System Secu-
rity, 3(4), November 2000.

W. Lee, S. J. Stolfo, and K. W. Mok. Mining audit
data to build intrusion detection models. In Proceed-
ings of the 4th International Conference on Knowledge
Discovery and Data Mining, New York, NY, August
1998. AAAT Press.

W. Lee, S. J. Stolfo, and K. W. Mok. Mining in a data-
flow environment: Experience in network intrusion de-
tection. In Proceedings of the 5th ACM SIGKDD Inter-
national Conference on Knowledge Discovery € Data
Mining (KDD-99), August 1999.

R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall,
D. McClung, D. Weber, S. Webster, D. Wyschogrod,
R. Cunninghan, and M. Zissman. Evaluating intrusion
detection systems: The 1998 DARPA off-line intru-
sion detection evaluation. In Proceedings of the 2000
DARPA Information Survivability Conference and Ez-
position, January 2000.

H. Mannila, H. Toivonen, and A. I. Verkamo. Discov-
ering frequent episodes in sequences. In Proceedings of
the 1st International Conference on Knowledge Discov-
ery in Databases and Data Mining, Montreal, Canada,
August 1995.

S. McCanne, C. Leres, and V. Jacobson. libpcap. avail-
able via anonymous ftp to ftp.ee.lbl.gov, 1994.

F. Provost, D. Jensen, and T. Oates. Efficient pro-
gressive sampling. In Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. AAAI Press, August 1999.

B. Schneier. Secrets & Lies: Digital Security in a Net-
worked World. John Wiley & Sons, Inc., 2000.

S.J. Stolfo, W. Lee, P.K. Chan, W. Fan, and E. Eskin.
Data mining-based intrusion detectors: An overview
of the Columbia IDS project. ACM SIGMOD Record,
30(4), December 2001.

SunSoft. SunSHIELD Basic Security Module Guide.
SunSoft, Mountain View, CA, 1995.

Volume 4, Issue 2 - page 41

[21] P. Viola and M. Jones. Robust real-time object detec-
tion. In Proceedings of the Second International Work-
shop on Statistical and Computational Theories of Vi-
son - Modeling, Learning, Computing, and Sampling,
May 2002.

[22] C. Warrender, S. Forrest, and B. Pearlmutter. Detect-
ing intrusions using system calls: Alternative data mod-
els. In Proceedings of the 1999 IEEE Symposium on Se-
curity and Privacy, May 1999.

SIGKDD Explorations. Volume 4, Issue 2 - page 42

