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ABSTRACT

Efficiency and scalability have always been important con-
cerns in the field of data mining, and are even more so in the
multi-relational context, which is inherently more complex.
The issue has been receiving an increasing amount of atten-
tion during the last few years, and quite a number of the-
oretical results, algorithms and implementations have been
presented that explicitly aim at improving the efficiency and
scalability of multi-relational data mining approaches. With
this article we attempt to present a structured overview.

1. INTRODUCTION

Efficiency and scalability have always been important con-
cerns in the field of data mining. They are even more so
when we focus on multi-relational data mining. The in-
creased complexity of the task calls for algorithms that are
inherently more expensive, computation-wise: larger hy-
pothesis spaces are searched and evaluation of a single hy-
pothesis becomes more complex. For instance, in database
terminology, evaluation of a single hypothesis might involve
one or more joins between tables, which is not the case for
classical data mining methods.

In this article, we attempt to give an overview of recent
evolutions in multi-relational data mining that have influ-
enced the efficiency and scalability of certain approaches.
We do not aim at giving an exhaustive survey of existing
techniques, but rather try to create a structured context
in which they can be placed. Many of the techniques and
ideas we discuss here originate in inductive logic program-
ming (ILP), but most of them carry over to the general
context of relational databases, as we will repeatedly point
out.

Typically, ILP techniques perform a search through some
large hypothesis space, during which many hypotheses are
generated and evaluated. There are two obvious ways in
which this process can be made more efficient: by reduc-
ing the number of hypotheses evaluated, and by making the
evaluation process itself more efficient. This is a first clas-
sification suitable for many (though not all) optimization
techniques.

We can further distinguish techniques that increase efficiency
at the cost of correctness, and techniques that preserve cor-
rectness. Correctness in this context should be understood
as: yielding the same results as some reference algorithm
that does not employ the technique. An algorithm that
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does not preserve correctness, should still give results that
are with sufficiently high probability sufficiently similar to
the reference results. Ideally this probability and similarity
are formally defined, and are parameters of the algorithm.
Some efficiency gain can be obtained by changing the rep-
resentation of the data. While the original work on ILP
considers the given knowledge base to be monolithic, more
recent approaches exploit a certain kind of locality of rel-
evant knowledge. This influences both the efficiency with
which hypotheses can be evaluated, and the ability to pro-
cess data sets without loading them entirely into main mem-
ory. Other optimizations related to changes of knowledge
representation are those that pre-compute and materialize
certain information that will often be needed; these include
so-called propositionalization approaches, where the multi-
relational problem is cast into a single-relational form.

The above considerations are reflected in the structure of
this article. We start (Section 2) with looking at aspects of
representation: the way in which data and knowledge are
represented influences the efficiency with which they can be
processed. We continue by discussing methods for reduc-
ing the number of hypotheses that need to be evaluated,
in Section 3, and discuss the computational complexity of
hypothesis evaluation (and how to improve it) in Section 4.
In Section 5 we discuss a class of methods that are more or
less in the intersection of the former categories: these are
methods that exploit similarities in data and hypotheses by
processing data and hypotheses in such a way that compu-
tations can be shared. Scalability with respect to memory is
discussed in Section 6. In Section 7 we present some related
work that does not really belong to any of the previous cate-
gories. Finally, we illustrate the scalability of current state-
of-the-art relational data mining systems with a number of
concrete cases (Section 8), and conclude in Section 9.

2. REPRESENTATIONAL ASPECTS

A distinction is sometimes made between two paradigms in
ILP: learning from entailment, and learning from interpreta-
tions [19]. Which one is used, has an effect on efficiency and
scalability. This is mainly because they differ with respect
to assumptions of locality of relevant information.

We do not go into technical details here, but illustrate the
issues on an example. Consider a relational database that
has information on students and the courses they follow.
There are three relations: Student, Course, and Follows; the
latter represents an M-to-N relationship between students
and courses.

Several tasks can be defined on this database. We might



Student Course

SName | Maj | Min CName | Prof Cred

joe phil. | math calculus | Jones | 4

jane math | phil. algebra | Smith | 3
history | Miller | 4

Follows

SName | CName

joe calculus

jane algebra

jane calculus

student (joe, phil, math).
student (jane, math, phil).
course(calculus, jones, 4).
course(algebra, smith, 3).
course(history, miller, 4).
follows(joe, calculus).
follows(jane, algebra).
follows(jane, calculus).

Figure 1: A toy database with information on students and
courses.

want to classify students into specific classes, or cluster them.
Similarly, we might want to classify or cluster courses (for
instance, popular and non-popular courses), or tuples of the
Follows relation (e.g., the target concept to characterize is
which students follow which courses). Note that a natural
join between the three relations leads to a universal rela-
tion for which the tuples can be mapped one-to-one with
the Follows tuples, but many-to-one with Student or Course
tuples. This implies that data mining tasks on the Follows
relation are inherently propositional, while tasks on Student
or Course are inherently relational.

Let us focus on the setting of classifying students. “Multi-
relational” in this context refers to the fact that for a given
student, information in different tuples in different relations
is relevant. This information is typically linked to from a
single tuple in the Student relation, via foreign keys. Thus,
the classification of a student is based on information in a
subdatabase of the original database, that is, a database with
the same database schema as the original one but a subset
of its tuples. We illustrate this with the following example.

ExXAMPLE 1. Consider the toy database shown in Figure 1.

The figure shows an entity-relationship diagram describing

the database structure, and a possible instance of the database.

The instance is shown in a relational as well as a first or-
der logic format; ILP systems would typically use the latter
format. Given a specific student, say, Jane, we can identify
that part of the database that is somehow connected to Jane
and therefore possibly relevant for her classification. We call
this the subdatabase describing Jane. It is shown in Figure 2,
again in both relational and first order logic format.

! More explanations and illustrations are given by De Raedt
et al. [20] and a constructive definition of this subdatabase
is given by Blockeel [11], p. 77-79.

Student Course

SName | Maj | Min CName | Prof Cred

jane math | phil. calculus | Jones | 4

algebra | Smith | 3
Follows
SName | CName
jane algebra
jane calculus

student (jane, math, phil).
course(calculus, jones, 4).
course(algebra, smith, 3).
follows(jane, algebra).
follows(jane, calculus).

Figure 2: A partial database, containing the information
relevant for classifying a single tuple of the Student relation.

While classically a distinction is made between propositional
data mining (find patterns within the tuples of a single re-
lation) and multi-relational data mining (find patterns that
extend over different tuples of different relations), by intro-
ducing the notion of “individuals” we can make an other
classification: methods that find patterns within the de-
scription of an individual, and those that find patterns that
extend over individuals.

We can then distinguish three settings for data mining:

1. finding patterns within individuals that are represented
as tuples

2. finding patterns within individuals represented as sets
of tuples (that is, each individual is a sub-database of
the original one)

3. finding patterns within the whole database

For instance, we could look for patterns that indicate which
minors are often chosen with which majors. Such patterns
can be found by looking only at Student tuples; hence this
is setting 1. We could be interested in patterns regarding
the behavior of students, e.g., which combinations of courses
student tend to choose (“a student who takes course A will
probably also take course B”). Note that information on
the courses followed by a particular student is spread over
several tuples, but the number of such tuples is limited (as
a particular student follows a limited number of courses).
Therefore, this task belongs to setting 2. Finally, finding
patterns concerning multiple students (“courses followed by
student A are often also followed by student B”) belongs to
setting 3, because the information relevant for such a pattern
may be spread throughout the whole database.

Settings 2 and 3 are multi-relational. Setting 2 degenerates
into Setting 3 if the subdatabases that are constructed turn
out to be the whole database. In many cases, however, there
is a natural notion of “individual” which causes the sub-
databases to be much smaller than the original database.
For instance, when mining molecular databases, patterns
are sought within single molecules. The subdatabase then
corresponds to the description of a single molecule, which is
much smaller than the whole database.

Assuming that there is indeed a clear notion of “individ-
ual”, there are two options: one is to mine the database in



its original format, the other is to reformat the database,
explicating the subdatabases. The latter option is used by
some ILP systems that learn from interpretations, such as
ACE [15], or those that use a term-based representation
[26]. Following Flach and Lachiche’s terminology [26], we
call these representations “individual-centered”, as opposed
to the original “predicate-centered” representation.

The use of individual-centered representations has a number
of advantages. First, it has a positive effect on the theoret-
ical learnability of concepts. De Raedt and Dzeroski [21]
have obtained positive PAC-learnability results for this set-
ting, and this is mainly due to the assumption that patterns
are searched within individuals and that the description of
individuals in the database is complete (that is, all relevant
information on an individual is given).

Second, the individual-centered approach is more similar to
the propositional mining setting, in that there is a clear
notion of individual examples. Because of this, techniques
from propositional learning can more easily be copied. For
instance, sampling becomes easier (taking a subsample of
individuals is difficult if it is not obvious which information
in the database is relevant for which individuals), and so
do techniques for processing data one example at a time
(thus avoiding the need to have all data in main memory
simultaneously; we will return to this in Section 6).

An obvious disadvantage of the individual-centered repre-
sentation is that its format depends on the notion of “in-
dividual”. In those cases where there are several natural
individuals, a separate representation has to be formed for
each of them. In the students and courses example, both
students and courses may be natural individuals, and when
we want to classify students we would need to use a different
representation than when we want to classify courses.

A more extensive comparison of representations in the re-
lational setting is made by Lachiche and Flach [48]. We
conclude here by remarking that the difference between the
individual-centered and the predicate-centered representa-
tions is to some extent similar to the difference between
object-oriented and relational databases. In object-oriented
databases, information on an individual is directly linked
to the object representing the individual, whereas in a rela-
tional database, the information is spread throughout sev-
eral tables and has to be looked up via indexes. It may well
be that for multi-relational data mining, the object-oriented
paradigm will turn out to be more suitable than the rela-
tional database paradigm.

3. MULTI-RELATIONAL DATAMINING AS
SEARCH

Multi-relational data mining can be formalized either as a
constraint satisfaction problem (e.g., find all clauses cov-
ering more than £ students) or as an optimization problem
(find the most discriminant clauses, e.g., discriminating East
Coast from West Coast students). In both cases, the task
can be formulated as a search process. Given a hypothesis
space H and some real-valued (respectively boolean) crite-
rion ¢, find the clauses h in H such that they maximize ¢
(resp. such that c(h) holds).

Clearly, these goals can be formalized along Mannila and
Toivonen’s framework [52].

DEFINITION 1. Multi-relational Data Mining is the pro-

cess of finding all clauses h, aka hypotheses, in a language
H, that satisfy a predicate ¢ with respect to a database, or
set of examples £.

Find TH(h,H,r) = {h| h € H,h satisfies c(h,E)}

Predicate c is most often related to the coverage of clause
h, or a numerical expression thereof, which must either be
greater than a user-fized threshold, or reach an optimum
value.

As exhaustive search is usually intractable because of the
size of H, several approaches have been proposed to enforce
an efficient search procedure. These approaches are based on
different kinds of inductive biases: syntactical biases, search
biases, and validation biases. In particular, one can:

e Identify a subspace H' of H in which the solution is;
here, one uses prior knowledge or user’s requirements
to define syntactical biases (ILP) or pattern languages
(MRDM).

e Identify rules for pruning the search space; this in
a sense corresponds to dynamically adapting the hy-
pothesis space during the search, cutting away parts of
H for which it has become clear during the search that
they cannot contain a solution. For instance, mono-
tonic constraints naturally induce pruning rules [53]: if
a clause covers less than € students, any specialization
of this clause will cover even fewer students.

o Weaken the task into finding 7" instead of the true so-
lution set TH, where T contains all h such that c(h)
holds with a certain probability, or ¢(h) is close to the
optimum. This relaxation can be achieved by sampling
the hypothesis space H (stochastic search biases), or
by reconsidering the assessment of hypotheses (valida-
tion biases will be considered in more detail in Section
4.2).

3.1 Syntactical biases and typed logic

We distinguish the hypothesis space H and the search space,
which is the subset of H actually evaluated during the search
process.

ILP methods typically reduce the size of H by specifying as
specifically as possible the form of potentially interesting hy-
potheses. This is done through a “language bias”, or pattern
language, which typically imposes syntactical constraints on
the format of a hypothesis.

Types and input/output modes are often used in ILP [59].
By using typed arguments of predicates, certain nonsensi-
cal hypotheses are avoided; for instance, it does not make
sense to say that X is the number of courses followed by
a student and then test whether X attends course Y. In-
put/output modes tell the system which predicates generate
certain information, and which consume this information.
For instance, the age predicate returns for a certain person
the age of that person, whereas the < predicate compares
two variables but cannot instantiate a variable to a specific
number. In this respect, modes can be viewed as constraints
on hypotheses or queries, enforcing their utility.

Also schemas are popular for defining hypothesis spaces.
These schemas provide a more strict syntactical format for



hypotheses, typically specifying which predicates have to oc-
cur in which order, but making some of them optional or
leaving the variables that should occur in certain positions
unspecified. Examples are DLAB (Dehaspe and De Raedst,
1996) or the schemata used, for instance, by RDT (Kietz
and Wrobel, 1992). A more complete overview of language
biases that have been used in ILP is given by Nedellec et al.
[61].

While much work on declarative bias specifications uses logic
programming terminology, several specification languages
have been proposed that are much more in line with rela-
tional databases. For instance, Wrobel’s Midos system [85]
uses the notion of foreign links in its pattern language spec-
ification, and Knobbe et al. (2000) propose to use UML
models to define a pattern language, where the patterns are
graphical query representations (“selection graphs”). The
use of selection graphs as patterns has since then been adopted
by several other authors [6; 5].

Syntactical biases are often explicitly enforced through search
operators (see below). An alternative is to include type con-
straints into the definition of H [49; 39], and make no re-
striction about the search operators.

3.2 Search biases and pruning rules

As mentioned in the introduction, ILP systems perform a
search through a hypothesis space, generating and evaluat-
ing many candidate solutions and using the result of these
evaluations to generate new candidates. The search usually
stops at the first candidate solution meeting the require-
ments (on coverage, generality, etc.) [66], or it might con-
tinue until no better solution can provably be found, for
instance using an A* algorithm [59].

In each step, some candidate hypotheses are generated from
the current hypotheses using so-called refinement operators.
For instance, the construction of Liy1 candidates from the
Lj, ones in Apriori [1], constitutes a refinement operator.
Along the same lines, many refinement operators in ILP
proceed by adding or removing a literal from the current
hypothesis.

Besides limiting the hypothesis space through syntactical
biases, the actually traversed search space can be reduced
further by introducing rules, or search biases, limiting the
generation of candidate hypotheses (e.g., guiding the choice
of the literals to be added or removed from the hypothesis).
Some of these rules are related to the properties of refine-
ment operators per se; these properties have been studied
extensively in ILP. For instance, there is no point in gen-
erating a given candidate hypothesis more than once (non-
redundancy property [4]). Conversely, no potentially rele-
vant hypothesis should be skipped (completeness property).
Nienhuys-Cheng and De Wolf [62] provide theoretical foun-
dations for ILP in which refinement operators play an im-
portant role.

Other pruning rules are related to the properties of refine-
ment operators in connection with the search criterion. Typ-
ically, the Apriori algorithm uses the anti-monotonicity of
coverage to prune the candidates in Liyi. Along the same
principle, the systems Progol [59] or Aleph? typically per-
form an A*-search which soundly cuts branches of the search
tree without giving up the guarantee of finding the optimal
hypothesis. Such pruning rules are based on the monotonic

2http://web.comlab.ox.auc.uk/oucl/research/aureas/machleamn/Aleph/

properties of the search criteria: typically, complexity can
only increase as a hypothesis undergoes specialization; in
the meanwhile, its coverage can only decrease; etc.

Ideally, the search criteria and refinement operators should
be designed together, in such a way that i) any solution
hypothesis can be obtained by refining an admissible candi-
date hypothesis; and ii) any refinement of a non-admissible
hypothesis is non-admissible either.

‘When this is the case, the search space is said to be convex
with respect to the criteria and the refinement operators [80].
Interestingly, monotonic and anti-monotonic constraints de-
fine a convex search space for level-wise algorithms [52],
which explains their computational efficiency.

3.3 Search strategies and stochastic biases

Many data mining methods (such as decision tree induction
or rule induction) use heuristics to guide their search, and
multi-relational data mining methods are no exception to
this rule. These methods attempt to find a good hypothesis,
but usually do not guarantee that it is optimal, nor that it is
“probably close to optimal” with a maximal deviation and
minimal probability chosen by the user.

In practice, the exploration and pruning of candidate hy-
potheses can follow several search strategies. Among the
most efficient strategies is depth-first exploration, retaining
and refining only the current best hypothesis; this strategy
is implemented in Foil [67] and Tilde [13] among others.
The price to pay for this efficiency is the myopia of greedy
optimization. In the worst case (see Section 4.3), greedy
search is trapped into some local optima of poor predictive
quality. In other cases, it might happen that depth first
exploration leads to unnecessarily specific hypotheses (see
[63]) due to perturbations of the search criteria caused by
the amount of data.

Beam search is another search strategy; it avoids the limi-
tations of greedy myopic search, by retaining and refining a
limited number of the best current hypotheses [9]. The com-
putational cost varies linearly with the beam width. The
advantage is that a better learning robustness is obtained
through beam search, though there are still no guarantees
of optimality.

A third strategy implements the stochastic, population-based
exploration of the hypothesis space. This strategy is that of
evolutionary computation and genetic algorithms (GAs) [31;
7], which crudely mimic the Darwinian principle of survival
of the fittest. During each generation, candidate hypotheses
are generated by randomly perturbing the current pool of
hypotheses; the resulting hypotheses are thereafter evalu-
ated, and the worst candidate hypotheses are filtered out.
An important point is that these perturbations might indif-
ferently generalize or specialize the hypotheses, which makes
it easier to escape from local optima.

GA-based relational learning, such as implemented in Regal
[28], Dogma [34] or G-Net [3], usually provides very accu-
rate and predictively efficient hypotheses, at a high com-
putational cost; a few hundred of generations is routinely
achieved, generating a few hundred candidate hypotheses
each. As genetic search is intrinsically parallel (hypotheses
are assessed independently of each other), the computational
cost was an incentive to develop parallel implementations of
GA-based relational learning [2].

The search space explored by GA-based relational learning



is usually defined from a template selected by the expert,
in the line of DLab-like specifications; as could be expected,
the choice of the template is critical to the success of learning
[28].

More flexible search is permitted by variable-length evolu-
tionary computation, more precisely Genetic Programming
[43]. Genetic Programming extends the principles of genetic
algorithms to tree-structured search space, and was specif-
ically designed for optimization in program spaces [44; 8].
It has been used to explore Horn clauses and context-free
grammar spaces [84; 68]. It also allows for direct explo-
ration of higher order logic languages, such as Escher [49;
39].

Interestingly, efficient solutions are found on some problems
after a few generations (three or four), indicating that pure
random search might be sufficient to solve the learning prob-
lem. This statement is corroborated by recent results ob-
tained with Monte-Carlo exploration, randomly sampling a
set of hypotheses and returning the best one [77]. In spite
of its simplicity, this Monte-Carlo relational learner yields
results comparable with those of other learners on some ap-
plication domains. Further research is concerned with elab-
orating truly uniform sampling mechanisms on complex re-
lational hypothesis spaces.

4. EVALUATING CANDIDATE SOLUTIONS

As mentioned in the previous section, the search for solu-
tions is interleaved with evaluating the current candidate
solutions with respect to the database. These evaluations
involve matching the condition part of the hypotheses to
specific examples. Therefore, the efficiency of this matching
procedure is critical to relational data mining.

In this section, we first introduce the matching procedure
most used in ILP (f-subsumption [65]), and compare it with
logical querying. In the general case, logical queries and 6-
subsumption test are equivalent to NP-hard constraint sat-
isfaction problems. For this reason, several optimization
heuristics have been developed and will be presented. Last,
a theoretical study of f-subsumption, based on the phase
transition paradigm [36] has been achieved [29] and its im-
pact on the scalability of ILP has been examined on arti-
ficial problems. These results are briefly summarized and
discussed.

4.1 Logical queries and g-subsumption

A (candidate) solution is most often of the kind all instances
satisfying condition A also satisfy condition B, where con-
dition B usually is a very simple one (e.g., membership of
some class). The focus therefore is on optimizing the process
of collecting the examples satisfying condition A, where A
corresponds to a conjunctive query.

More generally in ILP, a candidate solution is a (set of)
clause(s); matching a clause with an example boils down to
searching a variable instantiation such that the body of the
clause is true given the example.

For efficiency reasons,® the relational matching test used
in the ILP literature [58; 60; 25] is the theta-subsumption
test defined by Plotkin [65]; it amounts to finding a vari-
able instantiation for the clause body (resp. head) such

3Logical implication is not decidable in the general case [69].
For this reason, the ILP literature uses a weaker covering
test, correct but not complete.

that this body (resp. head) becomes a subset of all facts
in the example. In the particular case where clauses are
equivalent to conjunctive queries (i.e., their head is empty),
f-subsumption is equivalent to query containment.

DEFINITION 2 (A-SUBSUMPTION). Clause C1 8-subsumes
clause Cy if and only if there exists a substitution 0 map-
ping the variables in C1 onto the variables/constants in Co
such that all literals in body(C1)0 appear in body(C2) and
head(C1)8 = head(C-).

EXAMPLE 2. Let C be defined as the conjunctive query
? — student(X, _, ), student(Y,_,_), follows(X, calculus),
follows(Y, algebra). C subsumes the clause given by the
conjunction of all facts in the toy database, Fig. 1. In-
deed, C subsumes the database given in Fig. 1 according
to two possible substitutions 61 = {X/joe, Y/jane} and
0> = {X/jane, Y/jane}.

In other words, clause matching corresponds to executing a
logical query. The theory of first order logic and of logic pro-
gramming (see, e.g., Lloyd, 1987) provides a large number
of theorems and techniques that can be used to reformu-
late these queries, making them simpler or more efficient to
execute.

Inspiration for improving the efficiency of matching is also
provided by the database community. Reordering of rela-
tional algebra operations is a well-known method for im-
proving the efficiency of a computation. For instance, when
applying consecutive selections it is useful to apply the most
selective ones first [38]. Similar techniques can be used to
improve the efficiency of clause-example matching [78].
Note, however, an important difference between query exe-
cution in relational or deductive databases and in Prolog sys-
tems: queries in a database are normally executed bottom-
up, whereas the Prolog execution mechanism works top-
down. This is natural from the point of view that databases
aim at computing sets of results, whereas Prolog aims at
confirming or denying the existence of at least one solution.
This difference, however, influences the optimization tech-
niques.

4.2 Optimization heuristics

As mentioned earlier on, theta-subsumption testing is NP-
complete due to the fact that the literals in the clause and
example need to be matched to each other, and the number
of possible matchings grows combinatorially in the number
of literals.

Several heuristics have been considered in the literature to
keep the complexity under control and reduce the number of
possible matchings as much as possible. These heuristics can
be grouped into three categories: i) ad hoc heuristics operat-
ing on particular kinds of clauses; ii) optimization heuristics;
iii) relaxed, stochastic, heuristics.

4.2.1 Exploiting particular clause structures

The simplest way of reducing the #-subsumption cost is to
consider only short hypotheses, if at all possible. Inciden-
tally, this heuristic (also known as Occam’s razor or simplic-
ity bias) is built-in in most ILP systems.

Another heuristic relies on the decomposition of the hypoth-
esis into independent (sets of) literals. As this is not pos-
sible in general (ILP systems look for connected clauses), a



relaxed version of decomposability known as k-locality has
been defined [41]; the idea is to take advantage of the fact
that sets of literals are independent, after the instantiation
of some variables has been defined.

EXAMPLE 3. Consider the conjunctive query ?—p(X,Y),
Y, 2), r(Y,U). q(Y, Z) and r(Y,U) are dependent, in the
sense that success of the query 7 — q(Y,Z),r(Y,U) cannot
be determined by checking whether ? — q(Y, Z) succeeds in-
dependently of checking whether 7 —r(Y,U) succeeds. How-
ever, given a fized instantiation for Y, they are indepen-
dent: for erxample, the query ? — q(a,Z),r(a,U) succeeds
if and only if both ? — q(a,Z) and ? — r(a,U) succeed. If
we know that the Prolog execution mechanism upon calling
p(X,Y) instantiates Y ,* then the remainder of the query can
be decomposed into independent parts. The query is trans-
formed into 7 — p(X,Y),once(q(Y, 2)),r(Y,U). The meta-
predicate once indicates that only one solution for q(Y,Z)
need be generated. After finding a solution for q(Y,Z), if
no solution for r(Y,U) is found, the normal Prolog ezecu-
tion mechanism would backtrack and try to generate different
Z that make q(Y, Z) true, but because of the independence
property we know this is pointless. By introducing the once
meta-predicate (which has a simple definition in Prolog) in
the clause, this can be avoided, without changing the normal
Prolog execution mechanism.

Scheffer et al. [71] propose an improved implementation of
k-locality, based on the construction of an intermediate data
structure, the substitution graph.

Along the same lines, Santos Costa et al. [70] present a
number of query transformations that can speed up query
execution considerably. These are based on identifying parts
of a query that can be checked independently of each other,
which influences the efficiency in two ways. First, the stan-
dard backtracking process of Prolog has no notion of such in-
dependencies and may therefore perform unnecessary back-
tracking. This can be avoided by reordering literals into
groups that succeed or fail independently of each other and
placing cuts between these groups. (A more advanced ver-
sion of this transformation applies the same principle recur-
sively.) Second, in a typical ILP search process, part of the
query is known to succeed for certain examples (because the
clause is obtained by extending a previously encountered
clause that has been evaluated already). Any part of the
clause that succeeded previously and is independent from
the extension of the clause, will certainly succeed and need
not be tested again.

Another line of research examines the case of acyclic con-
junctive queries. Following Gottlob [32], Horvath and Wro-
bel [37] discuss how efficiency gains can be obtained by con-
sidering only acyclic conjunctive queries, a relatively gen-
eral subclass of queries for which the matching problem is
tractable. Such classes of queries/hypotheses are particu-
larly representative in tree-structured application domains,
such as XML data.

4.2.2 Optimization heuristics

In the general, intractable, case, the procedures developed
for constraint satisfaction problems (see Tsang [81] for a

*Such knowledge is often available in practice, and especially
in the context of relational databases it is typically true
because tuples in a relation do not contain free variables.

comprehensive presentation) can be exploited to enhance
the #-subsumption test efficiency. A specific rewriting of
the matching clause problem into a binary CSP has been
proposed [51], making it possible to employ standard arc
consistency and constraint propagation procedures, and re-
duce the subsumption cost by some orders of magnitude.

4.2.3 Relaxing g-subsumption

In particular regions of the search space, which will be fur-
ther detailed in the next section, it makes sense to replace
#-subsumption by a stochastic estimate [73; 74]. Stochas-
tic subsumption proceeds by uniformly sampling the set of
substitutions matching the candidate solution with the ex-
ample, and deciding whether the solution subsumes the ex-
ample based on this sample only. Note that stochastic sub-
sumption is correct, but not complete; if clause C stochasti-
cally subsumes example E, C subsumes E, but the converse
does not hold. Hence, clause assessment based on stochastic
subsumption is biased towards overly general solutions, al-
though this bias might be countered by using again stochas-
tic matching when applying the clause.

A last possibility is to evaluate clauses on a subsample of
the available learning set. Sub-sampling of the learning set
has been extensively investigated in propositional learning
(e.g., [63; 72]), with considerable efficiency gains in compu-
tational cost and little loss if any in predictive accuracy in
general. In the relational context, Srinivasan (1999) explores
two sampling techniques (selecting sub-samples randomly,
or through “windowing”; in the latter case examples with
erroneous predictions are added to the sub-sample), with
similar results.

4.3 The phase transition barrier

As mentioned earlier on, f-subsumption testing and logical
querying are equivalent to constraint satisfaction problems
[33].

In CSPs, another framework for analyzing the computa-
tional complexity has appeared in the nineties [17]. Con-
trasting with average- and worst-case analysis, this novel
framework handles complexity as a random variable depend-
ing on the order parameters of complexity (e.g., constraint
density and tightness).

This framework has been adapted for analyzing the com-
plexity of the f-subsumption test by Giordana and Saitta
[29]. Considering the #-subsumption of example e by clause
(hypothesis) h, four order parameters are considered:

- the number n of variables in h,

- the number m of predicate symbols in A,

- the number L of constants in e (assuming that e is a
grounded clause)

- the number N of literals in e per predicate symbol in® h.
For the sake of simplicity, it is assumed that all predicates
are binary, and that example e contains exactly IV literals
built on each predicate symbol in h.

For fixed values of parameters n and N, one thousand pairs
(h,e) have been generated for each value of (m, L), where
h is a conjunction of m literals built on m distinct predi-
cate symbols involving n variables, and e is the conjunction
of m x N ground literals, the arguments of which are uni-
formly selected without replacement in a set of L constants

SPredicate symbols in e that do not appear in h do not play
any role in the subsumption test.
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For each value pair (m, L) one measures the average compu-
tational cost® of #-subsumption (Fig. 3) and the percentage
of success of the f-subsumption test (Fig. 4).
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Figure 3: Computational cost of f-subsumption in plane
(m, L), averaged on 1,000 pairs h, e, for N = 100 and n = 10.
(Reproduced with kind permission from A. Giordana and L.
Saitta.)

Figure 4: Percentage of successful #-subsumption tests in
plane (m, L) over 1,000 pairs h,e, for N =100 and n = 10

This experiment confirms the findings of CSPs [35]. The ef-
fective complexity landscape depicted in Fig. 3 shows that
the -subsumption cost is almost always negligible, except in
a narrow region termed the phase transition region. The av-
erage complexity reaches its maximum in this region, where
the probability of success of the §-subsumption test abruptly
decreases from almost 1 (in the high plateau on the left of
Fig. 4, called satisfiable region) to almost 0 (in the low
plateau on the right, called insatisfiable region).

EXAMPLE 4. It is important to see that the (satisfiable
and insatisfiable) regions characterize clauses and examples
with respect to one another. By abuse of language, as the
examples are fized from the context in ILP and MRDM, one
often says that a candidate clause belongs to the satisfiable
or insatisfiable region.

For instance, with respect to the toy database (examples)

5The conjecture done in CSP is that the height of the com-
plexity peak depends on the algorithm used to solve the CSP
problem, but the location of the peak is independent of this
algorithm [36].

given in Fig 1, clauses such as follows(X,Y), course(Y, _, )

belong to the satisfiable region (the examples contain many

students following many courses).

In contrast, clauses such as follows(X,Y), course(Y, ., -),

follows(X')Y), follows(X")Y), X # X', X # X", X' #

X" would belong to the insatisfiable region, as the toy database
contains at most two students following the same course.

(One sees that this clause would belong to the satisfiable re-

gion if a larger database had been considered).

This landscape describes the behavior of hypotheses and ex-
amples with respect to each other. When examples are fixed,
as is the case in machine learning and data mining, the satis-
fiable region would correspond to overly general hypotheses
(almost surely subsuming all examples), and the insatisfiable
region to overly specific hypotheses (almost surely subsum-
ing no examples).

The phase transition phenomenon that is observed for the
f-subsumption test, has far reaching effects on the behav-
ior of relational learners [30]. Comprehensive experiments
on artificial learning problems first show that most learners
tend to select hypotheses lying in the phase transition. In
retrospect, this should have been expected since this region
concentrates the hypotheses separating the examples.
These experiments also demonstrate that the greedy op-
timization of coverage-related criteria is misleading, when
dealing with long examples with poor background knowl-
edge. Fig. b5 displays the competence map associated to
FOIL [66], i.e. the region where FOIL succeeds in learning
(the predictive accuracy on the test examples being greater
than 80% for all problems indicated with a +), while the
failure region is indicated with a -.
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Figure 5: Competence map of FOIL in plane (m,L).
The phase transition region is situated between the dotted
curves.

Typically, when the learning search starts in the satisfiable
(or in the insatisfiable) region, the coverage criterion just
misleads the learner since it hardly makes any relevant dif-
ference between the hypotheses’. The reader is referred to
Giordana et al. [30] for more details.

"Unexpectedly, learning becomes easier as the sought tar-
get concept is longer, and the learning problem is farther
away from the PT region. A tentative explanation offered
for this fact is that the number of generalizations of the
target concept in the PT, which are acceptable solutions,
exponentially grows with the size of the target concept.



These experiments on “Needle-in-the-Haystack”-like prob-
lems suggest that novel heuristics are required to learn long
target concepts [75; 10].

However, these results must be taken with care, for two rea-
sons. First of all, phase transition depicts a global behavior,
and does not say anything on a particular case (meaning
that simple problems can be met within the phase transi-
tion, and hard problems can be encountered in the middle of
the satisfiable or insatisfiable region). Secondly, the exten-
sive study done by [30] relies on artificial problems; it can
be the case that real-world problems involve typical features
(e.g., the existence of large cliques, very unlikely in artifi-
cial problems), which might in turn significantly facilitate
(or hinder) learning. For instance, in most real-world prob-
lems it is expected that the phase transition is larger and
smoother, for examples will have different sizes (number of
constants, number of literals per predicate).

5. SHARING COMPUTATIONS

The methods that we describe in this section, aim at im-
proving the efficiency of the matching procedure, just like
the previous ones. They are different in the sense that here
we look at the matching process in a context where many
stmilar clauses are matched to the same eramples. In this
context, some computations may be repeated over and over
again, and it makes sense to try to store intermediate re-
sults instead of recomputing them. We distinguish three
approaches: materialization of features, pre-computation of
statistics, and reorganizing the search in such a way that in-
termediate results can be reused without effectively storing
them.

5.1 Materialization of Features

Repeated execution of the same or similar queries can give
rise to a lot of redundant computation. For instance, in the
context of mining a database containing molecular struc-
tures, consider a predicate benzene(L) that instantiates L to
a list of atoms that form a benzene ring. If a molecule is rep-
resented by listing its atoms and the bonds between them,
finding all benzene rings in a molecule involves a relatively
expensive search process. If no special measures are taken,
this computation is repeated each time a call to benzene
occurs.

In this case it is clearly more efficient to materialize the
benzene predicate, that is, to compute for each molecule
only once which benzene rings occur in it and store this
information explicitly with the description of the molecule.
Of course this increases the memory requirements of the
database. In general, this option is desirable in those cases
where the computation is complex and the number of results
to be stored is limited.

This process can be automated: an ILP system could easily
materialize all background predicates and add the results to
its database. As this may increase the size of the database
considerably, it should happen in a controlled fashion, that
is, the predicates to be materialized should be selected care-
fully. Currently this decision, and usually also the mate-
rialization itself, are left to the user. The development of
heuristics for automatically selecting predicates to be mate-
rialized seems quite feasible and might have a considerable
effect on the ease with which ILP systems can be applied in
practice.

We add that current Prolog technology includes methods
for storing intermediate results at the fact level (instead of
the predicate level): this is known as tabling [18]. Tabling
can be considered a lazy version of the materialization men-
tioned above, and might in some cases be preferable over
materialization of complete predicates. The main problem
remains the choice for which predicates tabling should be
employed.

Propositionalization, as proposed by several authors (for an
overview, see Kramer et al. [46]), is also an instance of pre-
computation of features. In this case, precomputed features
are not added to a relational description of the examples,
but to a propositional description, so that a propositional
learner can be run afterwards. The efficiency gain obtained
by running a propositional learner is obvious, but the trans-
formation to propositional format is usually not lossless: the
information content of the propositional representation is
not equivalent to that of the original relational representa-
tion.

5.2 Pre-computation of Statistics

In the previous subsection we discussed how features of in-
dividual instances can be pre-computed. Pre-computation
is also possible at the level of the database as a whole. In
this case, statistics that describe the database and that will
be needed several times during the induction process, are
computed in advance and stored.

Moore and Lee [56] present a good example of this approach.
They argue in favor of precomputing sufficient statistics for
induction procedures. More precisely, given a table with n
attributes, they propose to count and store the frequency
of every combination of attribute values occurring in the
database. Note that this amounts to estimating the full joint
probability distribution of the domain of the table. This full
distribution contains all necessary information to compute
for instance class entropy (for decision tree induction), con-
ditional probabilities (for Bayesian approaches), etc. They
propose a data structure called AD-tree to efficiently store
the distribution. Note that the memory consumption of an
n-dimensional table representing the full joint probability
distribution is proportional to 2". AD-trees are a sparse
data structure that stores only the non-zero frequencies ex-
plicitly; thus the size of this representation is bounded lin-
early by the size of the data set. A number of other tricks are
used to minimize the memory consumption of the data struc-
ture. Nevertheless, such AD-trees can still be very large.
Pavlov et al. [64] look at the so-called query selectivity es-
timation problem, where the task is to estimate the size of
the result set of a query in a database. Note that this is
exactly the kind of query that is frequently generated by
data mining systems. They compare several approaches to
approximating the joint probability distribution of a rela-
tion; these approaches include AD-trees, models based on
independence of all attributes, maximum entropy modeling
(which models some dependencies between combinations of
attributes), and more. They compare the efficiency and ac-
curacy of these approaches, and conclude that counts can of-
ten be estimated quite accurately and efficiently with models
of reasonable size. In other words, even when AD-trees are
infeasible because of their size, accurate estimates of statis-
tics can be made efficiently using other techniques.

All of the previous work is set in a propositional setting,
but it is obvious that similar approaches could be employed



in a relational setting, with equally large efficiency gains to
be expected. Some work in this category is presented by
Getoor et al. [27]. They define stochastic relational mod-
els, which form a probabilistic description of a relational
database based on relational Bayesian networks. Further
work in this direction seems very promising.

5.3 Reorganizing Computations to Reuse In-
termediate Results Without Storing Them

The previous methods are based on storing intermediate re-
sults for later use. This principle is applicable only when
there is little risk of running out of memory because of this
storage. An alternative approach that avoids this risk, is
to reorganize the computations in such a way that inter-
mediate results are used immediately after they have been
produced, so that they do not have to be stored for a long
time. This implies that all consumers of these results should
be run shortly after the results have been produced, which
often makes some kind of parallelism necessary (that is, al-
gorithms are conceptually run in parallel, not necessarily on
parallel hardware).

One approach in this category is the work on query flocks
by Tsur et al. [82]. A query flock is a set of queries where
all queries have the same structure but differ with respect
to specific constants that are filled in certain positions. An
example of such a flock, taken from Tsur et al., is

:- exhibits(P, $s), treatments(P, $m),
diagnoses(P, D), not causes(D, $s).

answer (P)

The idea is that if the user is interested in all couples ($s,$m)
that co-occur at least ¢ times in a database,® instead of com-
puting the count for each ($s,8m) combination consecutively,
it is better to run a single query (the flock) through which
all the counts are simultaneously computed.

A similar approach is proposed by Blockeel et al. [15]. In
this case, the set of queries that is evaluated consists of
queries that share part of their structure, but not all of it.
The queries are structured into a kind of tree, called a query
pack, so that the common part of the queries is represented
only once. Such a tree can be defined in Prolog and exe-
cuted by any standard Prolog engine, but to execute it in a
maximally efficient way, changes at the level of the Prolog
interpreter are necessary. ILPROLOG is a dedicated Prolog
system for data mining that provides such a pack execution
mechanism [15; 83].

EXAMPLE 5. Consider the set of queries

7- p(X), I =1.

7- p(X), qX,a), I 2.

?7- p(X), q(X,b), I = 3.

7- p(X), qX,V), t(X), I = 4.

7- p(X), q(X,Y), t(X), r(Y,1), I = 5.

The task is to find out for which queries succeed for which
X. We will use the vartable I as a query identifier; that is,
a solution X = a, I = 3 implies that query 3 succeeds for
X = a. The set can be structured into a pack as follows
(the or operator is similar to the Prolog disjunction but has
slightly different operational semantics, see Blockeel et al.

[15]):

8Such a couple represents medication $m that often has
some side effect $s.

7- p(X), (I=1 or q(X,a), I=2 or q(X,b), I=3 or q(X,Y),
t(X), (I=4 or r(Y,1), I=5))

When running the pack, the common parts of the queries
are executed less frequently than when running all queries
consecutively. For instance, finding all instantiations of X
for which p(X) holds, is done only once in the pack, but five
times if all queries are ezecuted independently.

An interesting open problem is how the use of query packs
can be combined with individual query optimization tech-
niques, such as the ones mentioned in Section 4.2. The
combination is non-trivial because restructuring individual
queries may destroy the structure of the pack as a whole.

6. MEMORY-WISE SCALABILITY

As long as external storage devices have more storage ca-
pacity than internal memory, it will remain useful to devise
algorithms that can handle data that are stored on disk.
As external memory access is relatively slow, the amount of
such access should be kept low, and this may require changes
to induction algorithms. A number of techniques follow this
approach. Alternatively, memory-wise scalability can be im-
proved by storing data in internal memory as efficiently as
possible.

6.1 Processing Data on Disk

Blockeel et al. [14] describe a version of the first order de-
cision tree induction algorithm Tilde that processes an ILP
knowledge base without loading it entirely into main mem-
ory. The approach is based on the level-wise tree building
approach proposed by Mehta et al. [55] for propositional
trees. It loads the database one example at a time and
needs a single scan of the full database for a single level of
the decision tree. To achieve this, two loops in the standard
decision tree induction algorithm are switched. The stan-
dard description of decision tree induction involves compu-
tation of the quality of all possible splits for a certain data
set; this involves iterating over all tests and evaluating their
quality. The latter involves computing the split the test gen-
erates by evaluting the test on each relevant example in the
database, which is done with a second loop. By making the
example loop the outer loop, the quality of all tests has to
be computed incrementally, which increases administrative
work, but ensures that for a given level of the tree only one
scan through the database is needed.

This approach was proposed for the learning from interpre-
tations setting, and indeed some notion of locality of relevant
information is crucial for it to work. There is an assumption
that all information about a single example can be localized
and it is possible to load just this information into main
memory. In the learning from interpretations setting this
information consists of the interpretation describing the ex-
ample together with the background knowledge.

Note that the “switching the loops” principle is to some ex-
tent exploited implicitly in the query packs approach (run-
ning a query pack on an example is equivalent to running all
queries contained in it on that example). Consequently, the
latter can easily be adopted when processing data on disk.

6.2 Compact Representations of Data

A running thread through this and the previous section is
the trade-off that has to be made between storing infor-
mation explicitly and computing it on demand. In certain



application domains, explicit storage of all information cre-
ates a lot of redundancy as far as storage is concerned, while
on-demand computation creates redundancy with respect to
computations and hence makes the process computationally
more expensive.

Consider for instance knowledge bases that describe game
sessions of a board game such as Go. A game session is a
list of consecutive board states and the move made in that
state. In principle, each board state is determined by the
previous state and the move taken, so storing just a list of
moves is sufficient to describe the whole game. In practice,
the data mining system needs explicit representations of the
states, and computation of the next state involves quite a
bit of work (in Go, adding a stone may result in a set of
stones being removed from the board and computing this
set is non-trivial). The question is then whether it is pos-
sible to first compute explicit representations of all states
and then store them in a more compact way but without
making recomputation of all information necessary, e.g., by
making the representations share certain data structures.
For instance, instead of storing the move, one could store
the set of stones that are added and removed during a game
turn. This yields a representation that is much more com-
pact than storing full board positions and still avoids most
of the computational effort that is needed to compute the
following state from the current one.

A general solution to this problem is proposed by Struyf et
al. [79]. Their approach is set in the learning from inter-
pretations setting. They introduce two operators for defin-
ing an interpretation in terms of other interpretations; one
(Diff) defines the difference between the interpretation and
a previous one, the second (Comb) combines two or more
interpretations into a new one. Examples can be described
either explicitly, by listing the interpretation, or implicitly,
by referring to other examples or structures and using the
above operators. As materializing an interpretation may
require to materialize other interpretations first, the ques-
tion arises how the database should be navigated in order
to minimize these computations. Struyf et al. use a graph
representation for the knowledge base and follow a planning
approach to navigate through it.

7. OTHER APPROACHES

The suitability of ILP to mine relational databases has been
recognized early on in the history of ILP, and some research
in ILP has explicitly focused on the relational database view-
point [86; 12; 42]. As ILP uses a logical representation,
which is different from but largely equivalent to a relational
database representation, a natural question is how ILP sys-
tems could be adapted to work directly with data that are
stored in a relational database. Some research effort was
spent on this question. It was also hoped that if such a
link could be made, the ILP system would profit from the
query optimizers and efficient query execution procedures
that characterize RDBMSs.

Blockeel and De Raedt [12] describe a number of different
levels at which ILP algorithms can be coupled with RDB
systems, ranging from loose to tight integration. Morik and
Brockhausen [57] present an implementation called RDT/DB
where logical queries are transformed into SQL and these
SQL queries are run by a RDBMS. The results of these ef-
forts, in general, were somewhat disappointing. By now it

has become clear that the complexity of data mining lies
not only in the size of the database but also in the number
of queries, and in order to make the mining process as ef-
ficient as possible, single query optimization techniques are
insufficient. It is essential to exploit the fact that many sim-
ilar queries are run on the same data, in other words, to
optimize sets of queries. Both approaches are not necessar-
ily mutually exclusive: some of the work on single query
optimization in databases can probably be combined with
the multi-query optimization approach. Exactly how this
should be done, is an open problem.

Finally, we repeat that this paper does not aim at an exhaus-
tive survey of all approaches beyond the propositional ones
in machine learning and data mining. For instance, we did
not detail the Multiple Instance Problem paradigm intro-
duced by Dietterich et al [24; 54] which has been analyzed
as intermediate between propositional and fully relational
settings [19]. Description logics [16] also constitutes a set-
ting most relevant to data mining in particular relational
domains, e.g. XML data, beyond the scope of our paper.

8. SOME CONCRETE EXAMPLES

Several concrete applications confirm that nowadays multi-
relational data mining systems can indeed process relatively
large databases. We list a few.

Kramer et al. [45] used a multi-relational data mining ap-
proach to find structural properties in a set of over 40000
molecules, where each molecule has a relatively complex de-
scription. A small percentage of these molecules is known
to be active. Kramer et al. look for substructures appearing
frequently in the active molecules and infrequently in the
inactive ones, using an approach that can be seen as an ex-
tension of Apriori that uses both maximum and minimum
frequency constraints, and that is tuned for finding chains
of specific atoms (e.g., CI-C:C:C:C-O with ‘-’ denoting a
single and “’ an aromatic bond) in first-order descriptions
of molecules. Their approach exploits the techniques men-
tioned here, in that they constrain the search space in a
clever way, using the frequency constraints, and that they
look for patterns for which the matching procedure is cheap
(linear patterns).

In a project on mining UK traffic data, the ILP system
ACE-ilProlog [15] was applied to a relational database con-
taining over five million examples, using samples of 100,000
to 1,000,000 instances [47]. First order logic decision trees
[13] were built and converted into predictive rules, and trend
analysis was performed on frequent relational patterns found
by the ACE-ilProlog implementation of the first order asso-
ciation rule algorithm Warmr [23]. ACE-ilProlog incorpo-
rates many of the techniques mentioned here (query packs,
data sampling, ...).

In a different investigation [79], the same ACE-ilProlog sys-
tem was applied to a 194MB database of Go games con-
taining 172411 examples of game boards and moves made.
These data were analysed in order to find a good heuristic
for predicting the quality of a move in certain situations in
Go. To handle a data set of this size, the authors applied the
compact representation techniques mentioned before. Typ-
ical runtimes in this case were under five minutes. The ex-
periment also indicated that the compact representation did
not cause any significant loss of computational efficiency.



9. CONCLUSIONS

In recent years, techniques for ILP and multi-relational data
mining have undergone a significant evolution in the direc-
tion of more scalable and more efficient systems. We have
attempted to give an overview of this evolution. In our
opinion, major steps towards better performance are the in-
corporation of stochastic techniques in ILP systems, a shift
towards individual-centered methods (which brings this re-
search more in line with other data mining research), and
methods for precomputing features and statistics. Espe-
cially in the latter area, work seems to have just started,
and further advancements can be expected. In addition, an
increased understanding of complexity issues in relational
data mining (from, e.g., the results on phase transitions)
may yield important novel approaches to optimization in
the future.
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