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ABSTRACT
This short paper argues that multi-relational data mining
has a key role to play in the growth of KDD, and briefly
surveys some of the main drivers, research problems, and
opportunities in this emerging field.

1. WHAT DRIVES MRDM
Multi-relational data mining (MRDM) is a field whose

time has come. The fact that most data mining algorithms
operate on a single relation or table, while most real-world
databases store information in multiple tables, is of course
not new, and MRDM has a precursor going back over a
decade in the field of inductive logic programming (ILP) [12].
However, until recently, three factors were responsible for
the slow growth of this area: the limited scalability of multi-
relational algorithms, their inability to explicitly handle noise
and uncertainty, and a perceived lack of “killer apps.” As
the other articles in this issue of SIGKDD Explorations illus-
trate, each of these is bottlenecks is beginning to disappear
[3; 8; 22]. As a result, MRDM is entering a period of rapid
expansion that will increasingly place it at the center of the
KDD enterprise and its real-world impact.

We look at scalability, uncertainty and applications in
turn, with a particular focus on the latter, since they are
the main drivers of the recent growth in MRDM.

Enabling advances of the last few years on the scalability
front include: the identification of restrictions of the general
ILP problem that allow for computationally efficient solu-
tions (e.g., [21]); the extension of frequent-set algorithms to
the multi-relational case (e.g., [25]); and the increasing num-
ber and variety of algorithms for extracting patterns and
other information from very large graphs (e.g.,[23]). Much
remains to be done, including extending to the relational
setting scaling-up techniques that have been successful in
propositional (single-table) mining, and improving the inter-
face between MRDM and the relational database technology
that underlies it (see below).

One of the most significant developments of recent years
has been the convergence of ILP and probabilistic reasoning
and learning (Bayesian networks, in particular, and their ex-
tensions and specializations) [16]. ILP brings the ability to
handle multiple relations; probabilistic methods bring the

ability to handle uncertainty explicitly and systematically.
To a significant extent, MRDM can be viewed as the prod-
uct of this convergence. The growing stable of approaches
that exhibit it includes probabilistic relational models [14],
stochastic logic programs [20], Bayesian logic programs [18],
relational Markov models [1], first-order Bayesian classifiers
[13], and others. One challenge for future research is to
systematize this plethora of approaches, elucidating the re-
lations between them and their strengths and limitations.

Perhaps most exciting is the growth of several major
KDD applications that are intrinsically relational, and call
for algorithms that exploit this. They include:

The World-Wide Web. The WWW is a massive graph,
and taking the interconnections between pages into ac-
count leads to better results in Web search [4; 19], Web
page classification [7], etc. The success of Google’s Page-
Rank algorithm [4] and of Kleinberg’s “hubs and authori-
ties” algorithm [19] have led to an explosion of research on
mining the link structure of the Web [6]. MRDM provides
techniques for doing this, and for combining the “links
to” relation with the text content of the page, its HTML
structure, etc. Further, as the Semantic Web [2] develops
as a machine-readable alternative to the WWW, the rich-
ness and variety of the relational information available for
mining, and the potential benefits of mining it, grow in
parallel.

Counter-terrorism. The attacks of September 11 have led
to a greatly increased awareness of terrorist threats, and
one consequence of this has been a concerted push into
research relevant to counter-terrorism, particularly in the
United States. Data mining is a central (and sometimes
controversial) part of this effort. In particular, the link
analysis techniques traditionally used by intelligence and
law enforcement agencies can be naturally formalized, au-
tomated and extended in the context of MRDM [17], and
several major research projects in this direction are now
under way.1

Viral marketing. Traditional forms of marketing are in-
creasingly being supplemented (or replaced) by viral mar-
keting, which explicitly takes network effects into account
and seeks to leverage word-of-mouth among consumers [11].
Particularly in the Internet sector, the future of compa-
nies increasingly depends on the success of their viral mar-

1See http://www.darpa.mil/iao/EELD.htm for an example.



keting plans. Devising them properly involves modeling
the interactions among consumers and between consumer
attributes and product characteristics, which is funda-
mentally an MRDM task.

Social networks. More generally, the field of social net-
work analysis [26], which focuses on modeling the rela-
tions between social actors, is relevant to all the above
applications, and is a prime client for MRDM. The quan-
tity of data available for building social network models
is growing rapidly, and much progress can be expected if
MRDM provides the necessary tools.

Computational biology. ILP has had some notable suc-
cesses in molecular biology applications (e.g., predicting
carcinogenesis [24]). Most importantly, biology is fast
progressing from the study of individual genes and pro-
teins to the study of how they interact in the living cell.
Modeling these interactions and their relation to the ob-
servable outcomes, and to the properties of the participat-
ing molecules, is a vast area for application of MRDM.

Information extraction. The more text-based informa-
tion becomes available online, the greater the potential
impact of better information extraction (IE) techniques.
IE is a fundamentally relational problem, not only be-
cause its goal is to populate databases from text, but be-
cause doing this successfully requires understanding the
explicit and implicit relations among the entities the text
is about [5].

Ubiquitous computing. The growth in the number and
variety of devices that continuously produce data is a po-
tential bonanza for KDD. Mining what goes on in a ubiq-
uitous computing environment requires taking multiple
types of objects and relations into account.

This list is by no means exhaustive, of course, but rather
a representative sample.

2. RESEARCH CHALLENGES
The wealth of applications described in the previous sec-

tion means that the demand for better MRDM solutions is
high. However, many challenging research problems must be
addressed if this demand is to be fully met. Issues that cut
across all of the applications described, and where progress
will consequently have the broadest impact, include:

Learning from networks of examples. Most ILP rese-
arch has focused on problems where individual examples
have relational structure, but examples are still indepen-
dent of each other. For instance, an example might be
a molecule, with the bonds between atoms as the rela-
tional structure, and the task being to predict whether
the molecule is a carcinogen. However, arguably the most
interesting and challenging problem in MRDM is that of
dependences between examples. For example, molecules
do not act independently in the cell; rather, they partic-
ipate in complex chains of reactions whose outcomes we
are interested in. Likewise, Web pages are best classified
by taking into account the topics of pages in their graph
neighborhood, and consumers’ buying decisions are of-
ten best predicted by taking into account the influence of
their friends and acquaintances. The space of models that

assume example independence is a minuscule fraction of
the space of all possible models. Exploring the latter is
likely to prove a very rich area for research. A produc-
tive direction may be to focus on limited dependencies,
as Bayesian networks do for the propositional case.

Learning from time-changing relational data. Many
relational phenomena of interest take place over time (e.g.,
a shopper cruising through an e-commerce site, a terrorist
group preparing an attack, the response of an organism’s
immune system to an infection). Temporal phenomena
pose some of the most intriguing problems for MRDM.
How can we model the appearance, disappearance, as-
sembly and disassembly of objects, and the making and
breaking of relations among them? The real world is ob-
viously rife with such events, but they have not been ad-
dressed in traditional KDD. Further, learning and infer-
ence over time (e.g., in dynamic Bayesian networks) are
known to be particularly difficult; performing them in re-
lational domains is likely to pose both new challenges and
new opportunities.

Integration with traditional KDD. An oft-heard criti-
cism of MRDM is that the problems it addresses could in
principle be solved by traditional learners, if suitably for-
mulated. This is akin to saying that high-level program-
ming languages like Java and C++ are not very useful,
because the same programs could be written in assembly
code. In finite domains, all multi-relational problems can
indeed be reduced to equivalent propositional ones, but
this does not negate the compact representation, modu-
larity and scaffolding for learning and inference that re-
lational approaches provide. Nevertheless, the emphasis
in the MRDM literature has often been on the contrasts
between relational and propositional approaches, which
is understandable in a new field, but ultimately counter-
productive. Emphasizing the continuity between the two
will make widespread adoption of MRDM easier. Further,
MRDM should build on the extensive research already
done on propositional methods, by making it easy to plug
them into MRDM algorithms. For example, probabilistic
relational models should in principle allow any classifier
as a node model, and Bayesian logic programs should in
principle allow any classifier as a combining rule.

Integration with databases. Traditionally, a single table
for mining is extracted manually from a multi-relational
database. Finding the best way to do this is often quite
difficult, and can consume a large fraction of a KDD
project’s time. One of the great potential benefits of
MRDM is the ability to automate this process to a signif-
icant extent. Fulfiling this potential requires solving the
significant efficiency problems that arise when attempt-
ing to do data mining directly from a relational database,
as opposed to from a single pre-extracted flat file. Al-
though the study of this problem began with traditional
KDD (e.g., [15]), many challenging new issues arise in
the MRDM context. For example, it would be desirable
to support automated ad hoc search over join paths, effec-
tively assembling many different tables for learner mod-
ules on the fly, but a traditional RDBMS is too slow for
this. Extending streaming-data and approximate query-
ing approaches (e.g., [10]) to the MRDM domain is likely
to be part of the answer. Another aspect is that, by look-



ing directly at “unpacked” databases, MRDM is closer to
the “real world” of programmers formulating SQL queries
than traditional KDD. This means it has the potential for
wider use than the latter, but only if we address the prob-
lem of expressing MRDM algorithms and operations in
terms that are intuitive to SQL programmers and OLAP
users.

Learning from multiple sources of information. Data
for MRDM often comes from multiple sources. They
can be of many different types (e.g., relational databases,
plain text, HTML, XML, audio, video, sensors, etc.).
Even when they are of the same type, different sources of-
ten use different representations for the same entities, and
can be of widely varying quality. We would like MRDM
systems to be able to range autonomously over all sources
relevant to their task, perhaps even discovering them on
their own. Doing this requires figuring out automatically
how the source contents map to the objects and relations
of interest to the system. Giving multi-relational miners
the ability to use meta-data and self-describing data is one
step toward this. Another is using machine learning tech-
niques to generalize from known mappings to unknown
ones [9]. A third one is developing methods for auto-
matically gauging the quality of information sources, by
evaluating their responses to queries with known answers,
by mapping them to sources of known quality, etc.

Using domain knowledge. One of the most attractive fea-
tures of ILP is its ability to naturally incorporate domain
knowledge in the form of Horn rules and other state-
ments in first-order logic. The incorporation of domain
knowledge is essential to the success of any KDD project,
and the more it can be done automatically, the lower the
cost of the project, and the less time it will take. Un-
fortunately, domain knowledge in purely logical form is
very hard to come by. Application domains are messy
and complex, and so are experts’ minds. If MRDM can
take advantage of uncertain reasoning to absorb domain
knowledge in less polished forms, this may greatly in-
crease its range of applicability, and its success in the
applications it tackles.

Making the results of research accessible. One of the
bottlenecks preventing the wider use of MRDM is the fact
that relational algorithms tend to be much more involved
and difficult to understand than propositional ones. This
is doubtless partly the result of relational problems be-
ing intrinsically more complex. Nevertheless, MRDM re-
searchers must strive to present their algorithms in the
most accessible form possible, to devise frameworks and
simplifying ideas that reduce the “delta” required to un-
derstand a new algorithm, and to continue and expand the
practice of making easily-used software available.2 Other-
wise the uptake of MRDM by students and practitioners
will necessarily be slow and uneven.

In the long term, KDD can only be said to have truly
succeeded if mining data from multiple relations—as it is
stored in databases—and combining it with knowledge ex-
pressed in rich and noise-tolerant languages becomes far eas-
ier than it is today. This places MRDM at the heart of KDD,

2See http://www-ai.ijs.si/∼ilpnet2/systems for a list of
publicly-available ILP systems.

and means that the stakes are high for researchers working
in this area. The next few years should be an exciting time.
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