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ABSTRACT
The need for mining structured data has increased in the
past few years. One of the best studied data structures in
computer science and discrete mathematics are graphs. It
can therefore be no surprise that graph based data mining
has become quite popular in the last few years.

This article introduces the theoretical basis of graph based
data mining and surveys the state of the art of graph-based
data mining. Brief descriptions of some representative ap-
proaches are provided as well.
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1. INTRODUCTION
During the past decade, the field of data mining has emerged
as a novel field of research, investigating interesting research
issues and developing challenging real-life applications. The
objective data formats in the beginning of the field were
limited to relational tables and transactions where each in-
stance is represented by one row in a table or one transac-
tion represented as a set. However, the studies within the
last several years began to extend the classes of considered
data to semi-structured data such as HTML and XML texts,
symbolic sequences, ordered trees and relations represented
by advanced logics. Many papers on data mining of semi-
structured data have been presented in major international
journals and conferences [19]. The research on data mining
and machine learning of symbolic sequences also became ac-
tive in the last several years. Many papers appeared in ILP,
ALT and DS conferences [17]. Furthermore, in the last few
years, many researchers started working on mining ordered
tree structures [26]. One of the most recent research topics
associated with structured data is multi-relational data min-
ing whose main scope is to find patterns in expressive logical
and relational languages from complex, multi-relational and
structured data [1]. The main aim of mining semi-structured
data, symbolic sequences and ordered trees is to extract pat-
terns from structured data. Within this framework, the pat-
terns mined are characterized by some measures such as fre-

quency and information entropy are mined. The classes of
the patterns handled in the multi-relational data mining are
more expressive than the aforementioned data structures.

Recently, a novel field of data mining emerged from a topo-
logical view of the data structure. In mathematics, one of
the most generic topological structures are graphs. Semi-
structure represented by text tags, symbolic sequence and
tree including ordered and unordered trees are subclasses of
general graphs. The earliest studies to find subgraph pat-
terns characterized by some measures from massive graph
data were conducted by Cook and Holder (SUBDUE) [3] and
Yoshida and Motoda (GBI) [25] in the middle of the 1990’s.
Their approaches used greedy search to avoid high com-
plexity of the graph isomorphism problem, which resulted
in an incomplete set of characteristic subgraphs. In 1998,
Dehaspe and Toivonen proposed an ILP-based algorithm,
WARMR, enabling a complete search for frequent subgraphs
from graph data [6]. Subsequent work done by Nijssen and
Kok proposed a faster algorithm, FARMER [21]. In 2000,
Inokuchi et al. proposed an approach called AGM to com-
bine Apriori algorithm and mathematical graph theory [11].
In 2001, De Raedt and Kramer proposed the version space
based approach called MolFea to find characteristic paths
from the graph data [4].

Based on these pioneering studies, the number of papers
on graph mining is rapidly increasing. The total number
of papers related to graph and tree mining in SIGMOD,
SIGKDD, IJCAI/AAAI, ICML, ECML/PKDD and IEEE
ICDM was 10 in 2001, whereas the number increased to 18
in 2002 in our count. In addition, a considerable number
of papers on this topic appeared in other international con-
ferences and workshops. Thus, the research field of graph
mining just started to emerge. Since graph topology is one
of the most fundamental structures studied in mathemat-
ics, and has a strong relation with logical languages, graph
mining is expected to contribute to the development of new
principles in data mining and machine learning. Further-
more, graph mining has a high potential to provide practical
applications because the graph structured data widely oc-
curs in various practical fields including biology, chemistry,
material science and communication networking.

Graph mining has a strong relation with the aforementioned
multi-relational data mining. However, the main objective
of graph mining is to provide new principles and efficient
algorithms to mine topological substructures embedded in
graph data, while the main objective of multi-relational data
mining is to provide principles to mine and/or learn the re-
lational patterns represented by the expressive logical lan-



guages. The former is more geometry oriented and the latter
more logic and relation oriented.

In this review article, the theoretical basis of graph-based
data mining is explained in the following section. Second,
the approaches to graph-based data mining are reviewed,
and some representative approaches are briefly described.

2. THEORETICAL BASES
The theoretical basis of graph-based data mining is not lim-
ited to one principle although the history of this research
field is still young. This is because research on graphs has
a long history in mathematics. In this section, the five
theoretical bases of graph-based data mining approaches
are reviewed. They are subgraph categories, subgraph iso-
morphism, graph invariants, mining measures and solution
methods. The subgraphs are categorized into various classes,
and the approaches of graph-based data mining strongly de-
pend on the targeted class. Subgraph isomorphism is the
mathematical basis of substructure matching and/or count-
ing in graph-based data mining. Graph invariants provide
an important mathematical criterion to efficiently reduce
the search space of the targeted graph structures in some
approaches. Furthermore, the mining measures define the
characteristics of the patterns to be mined similarly to con-
ventional data mining. In this paper, the theoretical basis
is explained for only undirected graphs without labels but
with/without cyclic edges and parallel edges due to space
limitations. But, an almost identical discussion applies to
directed graphs and/or labeled graphs. Most of the search
algorithms used in graph-based data mining come from arti-
ficial intelligence, but some extra search algorithms founded
in mathematics are also used.

2.1 Subgraph Categories
Various classes of substructures are targeted in graph-based
data mining. This is because the graph is one of the most
generic data structures and includes characteristic substruc-
tures in various views.

Mathematically, a graphG is represented asG(V,E, f) where
V is a set of vertices, E a set of edges connecting some
vertex pairs in V , f a mapping f : E → V × V . In
the graph of Fig. 1 (a), V = {v1, v2, v3, v4, v5, v6} and
E = {e1, e2, e3, e4, e5, e6, e7, e8, e9}. Each edge eh in E has
a relation represented as f(eh) = (vi, vj) in which vi and
vj are in V , for example, f(e1) = (v1, v2), f(e2) = (v1, v2),
f(e4) = (v1, v4) and f(e7) = (v4, v4) in Fig. 1 (a). The
most generic class of the substructure of G is a “general sub-
graph” where Vs ⊂ V , Es ⊂ E and vi, vj ∈ Vs for all edges
f(eh) = (vi, vj) ∈ Es. Fig. 1 (b) is an example of the gen-
eral subgraph in which a vertex v5 and edges e4, e6, e7, e8, e9
are missed. Another important and generic class of the sub-
structure is an “induced subgraph” where Vs ⊂ V , Es ⊂ E
and ∀vi, vj ∈ Vs, eh = (vi, vj) ∈ Es ⇔ f(eh) = (vi, vj) ∈ E.
An induced subgraph Gi

s of a graph G has a subset of the
vertices of G and the same edges between pairs of vertices
as in G. Fig. 1 (c) is an example of the induced subgraph in
which a vertex v5 is missed. In this case, only the edges e8
and e9 are also missed, and e4, e6, e7 are retained since they
exist among v1, v3 and v4 in the original G. The third im-
portant and generic class of the substructure is a “connected
subgraph” where Vs ⊂ V , Es ⊂ E and all vertices in Vs are
mutually reachable through some edges in Es. Fig. 1 (d) is
an example where v6 is further missed from (c). Moreover,

(d) is an example of an “induced and connected subgraph”
since it satisfies both conditions of the induced subgraph
and the connected subgraph.
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Figure 1: Representative subgraphs

An acyclic sub-
graph is called
a “tree”.
Though the
labels of ver-
tices and edg-
es are not
considered in
the aforemen-
tioned graph
formulation,
if we intro-
duce the la-
bels of edges
in the tree,
and if they
are ordered
in a way that
the label of
an edge is al-
ways young-
er than the
labels of its
lower (upper)
and right (left)
edges, the tree
is defined as
an “ordered
tree”. If
the edge is
not ordered
or does not have labels, the tree is called an “unordered
tree”. Fig. 1 (e) is an example of the ordered tree in terms
of the edge indices which has a root node v1, and is included
as a substructure in the original graph (a). The graph (f) is
an example of the unordered tree. If the substructure does
not include any branches, it is called a “path”of the original
G. The graph (g) is an example path.

2.2 Subgraph Isomorphism
Given two graphs Gx(Vx, Ex, fx) and Gy(Vy, Ey, fy), the
“subgraph isomorphism” problem is to find the subgraphs
Gsx(Vsx, Esx, fx), Gsy(Vsy, Esy, fy) and a bijection mapping
gxy between the vertices in Vsx and the vertices in Vsy such
that Gsx and Gsy are identical, i.e., fx(exh) = (vxi, vxj) ∈
Esx iff fy(eyh) = (vyi, vyj) ∈ Esy where vyi = gxy(vxi) and
vyj = gxy(vxj). The existence of gxy ensures the topological
identity between Gsx and Gsy. For example, the graphs (b)
and (d) in Fig. 1 commonly share the subgraph consisting of
the vertices {v1, v2, v3} and the edges {e1, e2, e3, e5} under
the bijection mapping of vi = gbd(vi), i = 1, 2, 3. Thus, this
mapping is a “subgraph isomorphism” between the graphs
(b) and (d).

In graph-based data mining, the subgraph isomorphism prob-
lem is further extended to cover multiple graphs. Given
a set of graphs {Gk(Vk, Ek, fk)|k = 1, ..., n}, the problem
is to find the subgraph Gs(Vs, Es, fs), a set of subgraphs
{Gsk(Vsk, Esk, fk)|k = 1, ..., n} and a bijection mapping fs

between the vertices of Gs and every Gsk for all k = 1, ..., n.
When fs satisfying this condition exists, Gs(Vs, Es) is a com-



mon subgraph of the given set of graphs. This definition of
the subgraph isomorphism provides the basis for matching
and counting of topologically identical parts of the given
graphs.

The graph isomorphism problem (i.e. the problem of decid-
ing whether two graphs have identical topological structure)
has an unknown computational complexity. It is either NP-
complete or polynomial and all attempts to classify it in
one of these two categories have so far failed. On the other
hand, the subgraph isomorphism problem (i.e. the problem
of deciding whether one graph is a subgraph of another one)
is known to be NP-complete.

2.3 Graph Invariants
Graph invariants are the quantities to characterize the topo-
logical structure of a graph. If two graphs are topologically
identical, i.e., isomorphic, they also have identical graph
invariants, though the reverse property does not hold. Ex-
amples of graph invariants are the number of vertices, the
degree of each vertex, i.e., the number of edges connected
to the vertex, and the number of cyclic loops. Isomorphic
graphs always have identical values of all graph invariants,
while the identical values of given graph invariants does not
imply the isomorphism of the graphs. Accordingly the use
of graph invariants is not equivalent to complete isomorphic
subgraph matching and counting. However, graph invari-
ants can be used to reduce the search space to solve the
subgraph isomorphism problem. If any of the graph invari-
ants show different values between two subgraphs, the sub-
graphs are not isomorphic.

In discrete mathematics, many studies to solve the graph iso-
morphism problem between two graphs by introducing the
graph invariants have been made in the last decades. One of
the representative works is the NAUTY algorithm which is
known to be one of the fastest algorithms for graph isomor-
phism [18]. It focuses the graph invariants on each vertex in
the graphs, e.g., its degree and the numbers of its adjacent
vertices having certain degrees, to reduce the search space
drastically. The mapping of vertices having different values
of the graph invariants between the given two graphs never
exist in the graph isomorphism problem, because such ver-
tices locate at mutually different positions of the graphs in
the sense of topology. Accordingly, it partitions the set of
vertices V of a given graph into its subsets where every ver-
tex has mutually identical values of graph invariants. Then,
it checks the graph isomorphism between the subsets having
identical values of the graph invariants for the two graphs
in a brute force manner. If all subsets are isomorphic be-
tween the two graphs, the isomorphism of the two graphs is
concluded. This divide and conquer approach based on the
graph invariants significantly enhances the computational
efficiency in most of the practical problems.

More direct representation and handling of the graph struc-
ture can be made in an algebraic framework. The “adjacency
matrix” is one such example [11]. The i-th row and the i-th
column correspond to the i-th vertex vi. The i, j-element of
the matrix is the set of the edges {f(eh) = (vi, vj)} connect-
ing the vertices. To be rigorous, it is not a matrix because
its elements are not real numbers, but here we call it matrix
for convenience. If no edge exists between the two vertices,
the element is nil or 0. For example, the adjacency matrix
of Fig. 1 (a) is represented as follows.



















v1 v2 v3 v4 v5 v6

v1 0 {e2, e3, e4} 0 {e1} 0 0
v2 {e2, e3, e4} 0 {e5} 0 0 0
v3 0 {e5} 0 {e6} 0 0
v4 {e1} 0 {e6} {e7} {e8, e9} 0
v5 0 0 0 {e8, e9} 0 0
v6 0 0 0 0 0 0



















.

All graph invariants are derived from this direct represen-
tation of a graph. A drawback is the complexity on the
memory consumption and the processing time.

One of the most generic and important graph invariants is
“canonical label” and “canonical form” [11; 4]. A graph can
be represented by multiple forms. For example, all adja-
cency matrices obtained from an adjacency matrix through
permutations of rows and columns represent an identical
graph. This ambiguity is commonly seen in various graph
representations, and induces a combinatorial increase of the
search space in the graph isomorphism problem. The canon-
ical label is the most effective remedy for this issue. Various
definitions of the canonical label are possible, but it has to
uniquely represent a graph. For example, the n × n adja-
cency matrix can be labeled by a code generated from the
matrix elements in the following order.

x1,1x1,2x2,2x1,3x2,3x3,3...xn−2,nxn−1,nxn,n,

where only the upper right columns are used because of the
diagonal symmetry of the matrix for the undirected graph.
Similar coding is applicable to the case of directed graphs.
We can uniquely define the canonical label as the lexico-
graphically minimum (or maximum) code and the canonical
form of the adjacency matrix as the matrix corresponding
to the canonical label. The introduction of the canonical
label and the canonical form significantly reduces the graph
representation ambiguity and the search space.

Recently, a new research direction to use graph invariants for
the construction of a high dimensional feature space char-
acterizing a graph has been proposed [13]. Various machine
learning, data mining and statistical approaches can be ap-
plied if the graph is transformed into a feature vector. The
newly emerging approach collects many graph invariants on
a graph G, and forms a feature vector XG consisting of the
graph invariants. When the graph G is very complex, the
dimension of XG required to approximate the graph topol-
ogy closely can be very large. This causes computational
problems for many mining approach. To alleviate these is-
sues, the new approach introduces a kernel functionK(XGx ,
XGy ) and a mapping φ:XG → H enabling the representa-
tion of K by the inner product < φ(XGx), φ(XGy) >. K
represents a similarity between two graphs Gx and Gy, and
H is usually the Hilbert space. Because the value of the in-
ner product can be derived without directly computing the
vectors in H, this approach can avoid the tractability issue.
Moreover, the issue of the sparse distribution is also alle-
viated because the similarity K is given by a scalar value.
A drawback of this approach is that these kernels cannot
be computed efficiently. Some appropriate alternatives and
similarity measures have been proposed in recent works [7;
13].

2.4 Mining Measures
Various measures to mine substructures of graphs are used
similarly to conventional data mining. The selection of the



measures depends on the objective and the constraints of the
mining approach. The most popular measure in the graph-
based data mining is the following “support” whose defini-
tion is identical with that of Basket Analysis [2]. Given a
graph data set D, the support of the subgraph Gs, sup(Gs),
is defined as

sup(Gs) =
number of graphs including Gs in D

total number of graphs in D
.

This measure has an anti-monotonic property that sup(Gsx)
≤ sup(Gsy) if Gsy is a subgraph of Gsx. By specifying a
“minimum support” value minsup, subgraphs {Gs} whose
support values are more than the minsup are mined in some
approaches.

The anti-monotonicity of the support is insufficient for some
mining objectives. For example, an analysis to find sub-
graphs Gss which appear more than a minimum support
minsup but also less than a maximum support maxsup
(minsup < maxsup) may be needed in some application
domains. The former constraint c1 is anti-monotonic, i.e.,

(Gs < Gc1) ∧ (Gc1 ∈ sol(c1))→ (Gs ∈ sol(c1)),

where Gs < Gc1 means that Gs is more general than Gc1

(Gs is a subgraph of Gc1) and sol(c1) a solution set of c1,
i.e., a set of all subgraphs satisfying c1 in D. The latter
constraint c2 is monotonic, i.e.,

(Gs < Gc2) ∧ (Gs ∈ sol(c2))→ Gc2 ∈ sol(c2)),

where sol(c2) a solution set of c2. The negation of a mono-
tonic constraint is anti-monotonic, and the negation of an
anti-monotonic constraint is monotonic. The version space
algorithm of graph-based data mining can handle these mea-
sures as described later [4].

Many other mining measures which are very commonly used
in the machine learning field are also used in some graph-
based data mining approaches, especially, information en-
tropy, information gain, gini-index and minimum descrip-
tion length (MDL) [25; 3].

2.5 Solution Methods
The aforementioned subgraph isomorphism problem among
many graphs must be solved by using efficient search meth-
ods in graph-based data mining. Roughly speaking, five
types of search methods are currently used. These are cat-
egorized into heuristic search methods and complete search
methods in terms of the completeness of search. They are
also categorized into direct and indirect matching methods
from the view point of the subgraph isomorphism matching
problem. The indirect matching does not solve the subgraph
isomorphism problem but subgraph similarity problem un-
der some similarity measure.

The first type of the search method is the conventional
greedy search which has been used in the initial works in
graph-based data mining [25; 3]. This type belongs to heuris-
tic search and direct matching. The greedy search is further
categorized into depth-first search (DFS) and breadth-first
search (BFS). DFS was used in the early studies since it can
save memory consumption. Initially the mapping fs1 from a
vertex in a candidate subgraph to a vertex in the graphs of
a given data set is searched under a mining measure. Then
another adjacent vertex is added to the vertex mapped by
fs1, and the extended mapping fs2 to map these two vertices

to two vertices in the graphs of a given data set is searched
under the mining measure. This process is repeated until no
more extension of the mapping fsn is available where n is
the maximal depth of the search of a DFS branch. A draw-
back of this DFS approach is that only an arbitrary part
of the isomorphic subgraphs can be found when the search
must be stopped due to the search time constraints if the
search space is very large. Because of the recent progress
of the computer hardware, more memory became available
in the search. Accordingly, the recent approaches to graph-
based data mining are using BFS. An advantage of BFS is
that it can ensure derivation of all isomorphic subgraphs
within a specified size of the subgraphs even under greedy
search scheme. However, the search space is so large in
many applications that it often does not fit in memory. To
alleviate this difficulty, beam search method is used in the
recent greedy search based approach [3; 25] where the max-
imum number of the BFS branches is set, and the search
proceeds downward by pruning the branches which do not
fit the maximum branch number. Since this method prunes
the search paths, the search of the isomorphic subgraphs
finishes within tractable time while the completeness of the
search is lost.

The second type of search method is to apply the framework
of “inductive logic programming (ILP)” [20]. The “induc-
tion” is known to be the combination of the “abduction” to
select some hypotheses and the “justification” to seek the hy-
potheses to justify the observed facts. Its main advantage
is the abilities to introduce background knowledge associ-
ated with the subgraph isomorphism and the objective of
the graph-based data mining. It can also derive knowledge
represented by “first order predicate logic” from a given set
of data under the background knowledge. The general graph
is known to be represented by “first order predicate logic”.
The first order predicate logic is so generic that generalized
patterns of graph structures to include variables on the la-
bels of vertices and edges are represented. ILP is formalized
as follows [20]. Given the background knowledge B and the
evidence (the observed data) E where E consists of the pos-
itive evidence E+ and the negative evidence E−, ILP finds
a hypothesis H such that the following “normal semantics”
conditions hold.

1. Posterior Satisfiability: B ∧H ∧ E− |=/ 2,

2. Posterior Sufficiency: B ∧H |= E+,

where 2 is “false”, and hence |=/ 2 means that the theory
is satisfiable. In case of ILP, intentional definitions are de-
rived from the given data represented by instantiated first
order predicates, i.e., extensional definitions. For ILP, the
advantage is not limited to the knowledge to be discovered
but the ability to use the positive and the negative exam-
ples in the induction of the knowledge. A disadvantage is
the size of the search space which is very huge in general
and computational intractability. The ILP method can be
any of heuristic, complete, direct and indirect search accord-
ing to the background knowledge used to control the search
process. When control knowledge is used to prune some
search paths having low possibility to find isomorphic sub-
graphs under a given mining measure, the method is heuris-
tic. Otherwise, it is complete. When some knowledge on
predetermined subgraph patterns are introduced to match
subgraph structures, the method is indirect since only the



subgraph patterns including the predetermined patterns or
being similar to the predetermined patterns are mined. In
this case the subgraph isomorphism is not strictly solved.

The third type is to use “inductive database” [10]. Given
a data set, a mining approach such as inductive decision
tree learning, basket analysis [2] and ILP is applied to the
data to pregenerate inductive rules, relations or patterns.
The induced results are stored in a database. The database
is queried by using a query language designed to concisely
express query conditions on the forms of the pregenerated
results in the database. This framework is applicable to
graph-based mining. Subgraphs and/or relations among
subgraphs are pregenerated by using a graph-based min-
ing approach, and stored in an inductive database. A query
on the subgraphs and/or the relations is made by using a
query language dedicated to the database. An advantage
of this method is the fast operation of the graph mining,
because the basic patterns of the subgraphs and/or the re-
lations have already been pregenerated. Potential drawback
is large amount of computation and memory to pregenerate
and store the induced patterns. This search method is used
in conjunction with the following complete level-wise search
method in some works [4].

The fourth type is to apply “complete level-wise search”
which is popularly used in the basket analysis and “inductive
database”. These are complete search and direct methods.
In case of Apriori algorithm which is the most represen-
tative for the basket analysis [2], all frequent items which
appear more than a specified minimum support “minsup”
in the transaction data are enumerated as frequent item-
sets of size 1. This task is easily conducted by scanning
the given transaction data once. Subsequently, the frequent
itemsets are joined into the candidate frequent itemsets of
size 2, and their support values are checked in the data.
Only the candidates having the support higher than minsup
are retained as the frequent itemsets of size 2. This process
to extend the search level in terms of the size of the fre-
quent itemsets is repeated until no more frequent itemsets
are found. This search is complete since the algorithm ex-
haustively searches the complete set of frequent item sets in
a level-wise manner. In case of the graph-based data min-
ing, the data are not the transactions, i.e., sets of items, but
graphs, i.e., combinations of a vertex set V (G) and an edge
set E(G) which include topological information. Accord-
ingly, the above level-wise search is extended to handle the
connections of vertices and edges [11; 4]. Similarly to the
Apriori algorithm, the search in a given graph data starts
from the frequent graphs of size 1 where each consists of
only a single vertex. Subsequently, the candidate frequent
graphs of size 2 are enumerated by combining two frequent
vertices. Then the support of each candidate is counted in
the graph data, and only the graphs having higher support
than the minsup are retained. In this counting stage, the
edge information is used. If the existence and the label of
the edge between the two vertices do not match, the graph
of size 2 is not counted as an identical graph. This process
is further repeated to incrementally extend the size of the
frequent graphs in a level wise manner, and finishes when
the frequent graphs are exhaustively searched. In induc-
tive database and constraint-based mining, the algorithm
can be extended to introduce monotonic measures such as
“maxsup” [4].

The fifth type is “Support Vector Machine (SVM)” [23].

This is a heuristic search and indirect method in terms of
the subgraph isomorphism problem and used in the graph
classification problem. It is not dedicated to graph data but
to feature vector data. Given feature and class vectors

(x1, y1), ..., (xL, yL) xi ∈ Z, yi ∈ {+1,−1},

where L is the total number of data, i = 1, ..., L, Z a set
of vectors and yi a binary class labels, each sample feature
vector x1 in the data is classified by

y = sgn(

n
∑

j=1

yjαjφ(xi) • φ(x) + b).

Here φ : Z → H where H is the Hilbert space, αi, b ∈ R
and αi positive finite. By extending the feature space to far
higher dimension space via φ, SVM can properly classify the
samples by a linear hyper plane even under complex nonlin-
ear distributions of the samples in terms of the class in Z.
The product φ(xi) • φ(x) can be represented by the afore-
mentioned kernel function K(XGx , XGy ) for graphs where
XGx = xi and XGy = x. Accordingly, SVM can provide an
efficient classifier based on the set of graph invariants.

3. APPROACHES OF GRAPH MINING
The approaches to graph-based data mining are categorized
into five groups. They are greedy search based approach,
inductive logic programming (ILP) based approach, induc-
tive database based approach, mathematical graph theory
based approach and kernel function based approach. In this
section, some major studies in each category are described,
and representative methods among the studies are sketched.

3.1 Greedy Search Based Approach
Two pioneering works appeared in around 1994, both of
which were in the framework of greedy search based graph
mining. Interestingly both were originated to discover con-
cepts from graph representations of some structure, e.g. a
conceptual graph similar to semantic network and a physical
system such as electric circuits.

One is called “SUBDUE” [3]. SUBDUE deals with concep-
tual graphs which belong to a class of connected graph. The
vertex set V (G) is R ∪ C where R and C are the sets of
labeled vertices representing relations and concepts respec-
tively. The edge set E(G) is U which is a set of labeled
edges. Though the original SUBDUE targeted the discovery
of repeatedly appearing connected subgraphs in this specific
type of graph data, i.e., concept graph data, the principle
can be applied to generic connected graphs.

SUBDUE starts looking for a subgraph which can best com-
press an input graphG based on Minimum Description Leng-
th (MDL) principle. The found subgraph can be considered
a concept. This algorithm is based on a computationally-
constrained beam search. It begins with a subgraph com-
prising only a single vertex in the input graph G, and grows
it incrementally expanding a node in it. At each expansion it
evaluates the total description length (DL), I(Gs)+I(G|Gs),
of the input graph G which is defined as the sum of the two:
DL of the subgraph, I(Gs), and DL of the input graph,
I(G|Gs), in which all the instances of the subgraph are re-
placed by single nodes. It stops when the subgraph that
minimizes the total description length is found. The search



is completely greedy, and it never backtracks. Since the
maximum width of the beam is predetermined, it may miss
an optimumGs. One of the good features of SUBDUE is that
it can perform approximate matching to allow slight varia-
tions of subgraphs. It can also embed background knowl-
edge in the form of predefined subgraphs. After the best
substructure is found and the input graph is rewritten, the
next iteration starts using the rewritten graph as a new in-
put. This way, SUBDUE finds a more abstract concept at
each round of iteration. As is clear, the algorithm can find
only one substructure at each iteration. Furthermore, it
does not maintain strictly the original input graph struc-
ture after compression because its aim is to facilitate the
global understanding of the complex database by forming
hierarchical concepts and using them to approximately de-
scribe the input data. Recently, a new technique to induce a
graph grammar has been developed by the same group [12].

The other one is called “Graph Based Induction(GBI)” [25].
GBI was originally intended to find interesting concepts
from inference patterns by extracting frequently appearing
patterns in the inference trace. GBI was formulated to de-
rive a graph having a minimal size similarly to SUBDUE by
replacing each found subgraph with one vertex that it re-
peatedly compress the graph. It used an empirical graph
size definition that reflected the sizes of extracted patterns
as well as the size of compressed graph. This prevented the
algorithm from continually compressing, which meant the
graph never became a single vertex. GBI can handle both
directed and undirected labeled graph with closed paths (in-
cluding closed edges). An opportunistic beam search similar
to genetic algorithm was used to arrive at local minimum so-
lutions. In this algorithm, the primitive operation at each
step in the search was to find a good set of linked pairs of
vertices by an edge to chunk, i.e., pairwise chunking. The
idea of pairwise chunking in case of a directed graph is given
in Fig. 2. GBI chunks the triplet (Ak, fi, Bj) which mini-
mizes the above graph size where Ak and Bj are the vertices,
and fi is a link directing from Bj to Ak. This chunking is
repeated until the size of the graph reaches a local mini-
mum. It is possible that either one or both of the paired
nodes have already been chunked. Chunking can be nested.
GBI remembers the link information and can reconstruct
the original graph at any time of the search.
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Figure 2: Graph compression by pair-
wise chunking.

Later an im-
provement was
made to use
other measures
than frequency.
Because the
search is lo-
cal and step-
wise, an in-
direct measure
rather than a
direct estimate
of the graph
size is adopted to find the most promising pairs. Such mea-
sures include information gain, information gain ratio and
gini index, all of which can be evaluated from the frequency
of the pair selected to chunk. By using such measures it is
possible to extract substructures that are discriminating if
a class label is attached to each input graph, and construct
a classifier. This idea was applied to induce a classifier for

command prediction. It is known that a simple command
sequence is not enough to accurately predict the next com-
mand. The file I/O relations across the issued commands
together with the command sequence information form a di-
rected tree, and the prediction task is formulated to predict
the root node of a tree from its subtree. Figure 3 depicts the
process of the subgraph (subtree in this case) discovery in
the commands and I/O history data indicated in the table.
Unlabeled edges indicate command sequences and labeled
edges indicate file I/O relations. As shown in steps (A),
(B) and (C), the file paper.dvi is processed by three different
commands: xtex, xdvi and dvi2ps. The corresponding di-
rected graphs that are inputs to GBI are also given as (A),
(B) and (C) in the figure. The GBI algorithm first chooses
the dvi edge (fi) and its starting vertex latex (Bj) for testing,
and chunks the triplets (xdvi, dvi, latex) in (B) and (dvi2ps,
dvi, latex) in (C) in accordance with the information gain.
Next, the algorithm chooses the unlabeled edge and its start-
ing vertex xdvi for testing and chunks the triplet ((dvi2ps,
dvi, latex) , unlabel, xdvi). This separates (C) from (B)
and the induction stops. The parts surrounded by round
rectangles are the typical (discriminating) patterns. It is
straightforward to construct a decision tree from these pat-
terns.

xdvi latex

dvi2ps emacslatex

emacs xtex

xdvi emacslatex

latex emacs xtex

(A) xtex

(B)
.tex.dvi

(C)
.tex.dvi

.dvi

Step      Application     Input File
(A)              xtex paper.dvi

emacs paper.tex
latex          paper.tex

(B) xdvi paper.dvi
(C)             dvi2ps        paper.dvi

Figure 3: Subgraph discovery in
commands-I/O history.

The most re-
cent version of
GBI can han-
dle two differ-
ent measures,
one for chunk-
ing and the
other for ex-
tracting patters.
This is to over-
come the prob-
lem caused by
non monotonic
nature of dis-
criminating mea-
sure. The fact that a subgraph A is a good discriminator
does not necessarily mean that its subgraph B is also a good
discriminator. However, successive pairwise chunking re-
quests that B must be extracted in an earlier step in order
to obtain A later. Current GBI employs canonical labeling
to see if two chunks obtained by different histories are iso-
morphic or not. Recently GBI is also being used as a feature
constructor in a decision tree classifier for graph structured
data [8].

3.2 ILP Based Approach
To our knowledge, the first system to try complete search
for the wider class of frequent substructure in graphs named
WARMR was proposed in 1998 [6]. They combined ILP
method with Apriori-like level wise search to a problem
of carcinogenesis prediction of chemical compounds. The
structures of chemical compounds are represented by the
first order predicates such as atomel(C,A1, c), bond(C,A1,
A2, BT ), aromatic ring(C, S1) and alcohol(C, S2). The
first two state that A1 which is a carbon atom bond to A2
where the bond type is BT in a chemical compound C. The
third represents that substructure S1 is an aromatic ring in a
chemical compound C, and the last represents that S2 is an
alcohol base in C. Because this approach allows variables to



be introduced in the arguments of the predicates, the class
of structures which can be searched is more general than
graphs. However, this approach easily faces the high com-
putational complexity due to the equivalence checking under
θ-subsumption (an NP-complete operation) on clauses and
the generality of the problem class to be solved. To alleviate
this difficulty, a new system called FARMAR has recently
been proposed [21]. It also uses the level wise search, but
applied less strict equivalence relation under substitution to
reduced atom sets. FARMAR runs two orders of magni-
tudes faster. However, its result includes some propositions
having different forms but equivalent in the sense of the
θ-subsumption due to the weaker equivalence criterion. A
major advantage of these two systems is that they can dis-
cover frequent structures in high level descriptions. These
approaches are expected to address many problems, because
many context dependent data in the real-world can be rep-
resented as a set of grounded first order predicates which is
represented by graphs.

3.3 Inductive Database Based Approach
A work in the framework of inductive database having prac-
tical computational efficiency is MolFea system based on the
level-wise version space algorithm [4]. This method performs
the complete search of the paths embedded in a graph data
set where the paths satisfy monotonic and anti-monotonic
measures in the version space. The version space is a search
subspace in a lattice structure. The monotonic and anti-
monotonic mining measures described in subsection 2.4 de-
fine borders in the version space. To define the borders, the
minimal and the maximal elements of a set in terms of gen-
erality are introduced. Let F be a set of paths included in
graph data, then define

max(F ) = {f ∈ F |¬∃q ∈ F : f ≤ q},

min(F ) = {f ∈ F |¬∃q ∈ F : q ≤ f}

where f ≤ q indicates that q is more general than or equally
general to f . Then, given a set sol(c) of all paths satisfying
a primitive constraint c in a graph data set D, the borders
S(c) and G(c) are defined as

S(c) = min(sol(c)) and G(c) = max(sol(c)).

When c is a proper anti-monotonic constraints, G(c) = {>}
and S(c) 6= {⊥} holds, and when c is a proper monotonic
constraints, S(c) = {⊥} and G(c) 6= {>} holds. Under
these definitions, the two borders in the version space have
the following relation with sol(c).

sol(c) = {f ∈ F |∃s ∈ S(c), ∃g ∈ G(c) : g ≤ f ≤ s}.

The set of solutions sol(ci) to each primitive constraint ci

is a version space defined by the borders S(ci) and G(ci).
The computation of S(ci) and G(ci) for a constraint ci is
conducted by the commonly used level-wise algorithm men-
tioned in subsection 2.5. Furthermore, sol(c1 ∧ ... ∧ cn) to
a conjunctive constraint c1 ∧ ...∧ cn is also characterized by
S(c1 ∧ ... ∧ cn) and G(c1 ∧ ... ∧ cn). This sol(c1 ∧ ... ∧ cn) is
derived by the level wise version space algorithm [4].

Based on this framework, MolFea system can perform a com-
plete search for the solutions, w.r.t, a conjunctive constraint
consisting of monotonic and anti-monotonic primitive con-
straints. For example, given a set of molecule structure

graph data of chemical compounds, the following constraint:
(c-o ≤ f) ∧ ¬(f ≤ c-o-s-c-o-s) ∧ sup(f) ≥ 100 queries for
all paths fs embedded in the molecule structure that in-
clude (being more specific than or equal to) the subpath
c−o but do not include (not being more general than or not
equal to) the subpath of c-o-s-c-o-s and have a frequency
larger than 100. MolFea system has applied to the Pre-
dictive Toxicology Evaluation challenge data set [22]. This
data set consists of over 300 compounds. The goal of the
data mining here is to discover molecular fragments that
are frequent in carcinogenetic compounds and infrequent in
non-carcinogenetic compounds which are called “structural
alerts” in toxicology. The frequency and the infrequency
which are anti-monotonic and monotonic measures respec-
tively are specified to certain numbers as indicated below
and a solution for each pair of the frequency and the infre-
quency bounds are enumerated. Single bond and aromatic
bond between two atoms are represented by − and ∼ re-
spectively.

max : min
sup sup

6 : 0 : G = {c− c− c− c− o− c− c ∼ c}
S = {c− c− c− c− o− c− c ∼ c

∼ c ∼ c ∼ c ∼ c}
10 : 2 : G = {c ∼ c− c ∼ c, br, c− o− c ∼ c ∼ c ∼ c

∼ c ∼ c− n, c− o− c ∼ c− n}
S = {c ∼ c ∼ c ∼ c ∼ c ∼ c− c ∼ c ∼ c ∼ c

∼ c ∼ c, br − c, c− o− c ∼ c ∼ c ∼ c
∼ c ∼ c− n, c− o− c ∼ c− n}

16 : 5 : G = S = {c− c ∼ c ∼ c ∼ c− n}
20 : 7 : G = S = {n− c ∼ c ∼ c ∼ c ∼ c ∼ c− o,

c− c ∼ c ∼ c ∼ c− n, n− c ∼ c− o}

3.4 Mathematical Graph Theory Based Ap-
proach

The mathematical graph theory based approach mines a
complete set of subgraphs under mainly support measure.
The initial work is AGM (Apriori-based Graph Mining) sys-
tem [11]. The basic principle of AGM is similar to the Apri-
ori algorithm for basket analysis. Starting from frequent
graphs where each graph is a single vertex, the frequent
graphs having larger sizes are searched in bottom up man-
ner by generating candidates having an extra vertex.

An edge should be added between the extra vertex and some
of the vertices in the smaller frequent graph when searching
for the connected graphs. One graph constitutes one trans-
action. The graph structured data is transformed without
much computational effort into an adjacency matrix men-
tioned in subsection 2.3. Let the number of vertecies con-
tained in a graph be its “size”, an adjacency matrix of a
graph whose size is k be Xk, the ij-element of Xk, xij and
its graph, G(Xk). AGM can handle the graphs consisting
of labeled vertices and labeled edges. The vertex labels
are defined as Np (p = 1, · · · , α) and the edge labels, Lq

(q = 1, · · · , β). Labels of vertices and edges are indexed
by natural numbers for computational efficiency. The AGM
system can mine various types of subgraphs including gen-
eral subgraph, induced subgraph, connected subgraph, or-
dered subtree, unordered subtree and subpath. Because of
the space limitation, the case to mine induced subgraph is
shown here. This algorithm generates association rules hav-
ing support and confidence higher than user specified thresh-
olds. In the actual implementation, the adjacency matrices



are represented by the codes defined as in subsection 2.3.
According to the code, the canonical label and the canoni-
cal form are also introduced.

The candidate generation of frequent induced subgraph is
done as follows. It is also outlined in Fig. 4. Two frequent
graphs are joined only when the following conditions are
satisfied to generate a candidate of frequent graph of size
k+1. Let Xk and Yk be adjacency matrices of two frequent
graphs G(Xk) and G(Yk) of size k. If both G(Xk) and G(Yk)
have equal elements of the matrices except for the elements
of the k-th row and the k-th column, then they are joined
to generate Zk+1 as follows

Xk =

(

Xk−1 x1

x
T
2 0

)

, Yk =

(

Xk−1 y1

y
T
2 0

)

,

Zk+1 =









Xk−1 x1 y1

x
T
2 0 zk,k+1

y
T
2 zk+1,k 0









,

where Xk−1 is the adjacency matrix representing the graph
whose size is k−1, xi and yi(i = 1, 2) are (k−1)×1 column
vectors. The elements zk,k+1 and zk+1,k represent an edge
label between k-th vertices of Xk and Yk. Their values are
mutually identical because of the diagonal symmetry of the
undirected graph. Here, the elements zk,k+1 and zk+1,k of
the adjacency matrix Zk+1 are not determined by Xk and
Yk. In case of an undirected graph, two possible cases are
considered in which 1) there is an edge labeled Lq between
the k-th vertex and the k + 1-th vertex of G(Zk+1) and 2)
there is no edge among them. This is indicated in Fig. 4. Ac-
cordingly β+1 adjacency matrices whose (k, k+1)-element
and (k + 1, k)-element are “0” and “Lq” are generated. Xk

and Yk are called the first matrix and the second matrix to
generate Zk+1 respectively. Because the labels of the k-th

Figure 4: Candidate generation of fre-
quent subgraph.

nodes of Xk

and Yk are the
same, switch-
ing Xk and Yk,
i.e., taking Yk

as the first ma-
trix and Xk as
the second ma-
trix, produces
redundant ad-
jacency matri-
ces. In order
to avoid this redundancy, the two adjacency matrices are
joined only when the following condition is satisfied.

code(the first matrix) ≤ code(the second matrix)

The adjacency matrix generated under these constraints is
a ”normal form”. The graph G of size k+1 is a candidate
frequent graph only when adjacency matrices of all induced
subgraphs whose size are k are confirmed to be frequent
graphs. If any of the induced subgraphs of G(Zk+1) is not
frequent, Zk+1 is not a candidate frequent graph, because
any induced subgraph of a frequent graph must be a frequent
graph due to the anti-monotonicity of the support. This
check to use only the former result of the frequent graph
mining is done without accessing the graph data set. Af-
ter the generation of candidate subgraphs, their support is
counted by accessing the data set. To save computation for
the counting, the graphs in the data set are represented in

normal form matrices, and each subgraph matching is made
between their normal forms. This technique significantly
increases the matching efficiency. The process continues in
level-wise manner until no new frequent induced subgraph
is discovered.

This approach has been applied to the analysis of the associ-
ation of the molecule substructures of chemical compounds
with their mutagenesis activity. The data was drawn from
a chemistry journal of A. K. Debnath et al. [5].
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Figure 5: Examples of low activity sub-
structures.

The data con-
tains 230 aro-
matic and het-
eroaromatic ni-
tro compounds.
The percentages
of the molecule
having the class-
es of high, medi-
um, low and
inactive muta-
genicity are
15.2%, 45.7%,
29.5% and 9.6%
respectively. In the data preprocessing stage, numerical at-
tributes of the chemical compounds of LogP and LUMO
were discretized into symbolic magnitudes, converted to an
isolated vertex, and added to each molecule structure.
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Figure 6: Examples of high activity
substructures.

Figure 5 is the
discovered molec-
ular substruc-
ture indicating
low activity, and
Fig. 6 contains
the ones indi-
cating high ac-
tivity. The de-
viations of the
activity distri-
butions from the
original distri-
bution are clear
for both cases,
and their significances has been confirmed via χ2-test. After
the proposal of AGM, a family of graph-based data mining
based on similar principles has been proposed. A work is
FSG (Frequent SubGraph discovery) system [15] which also
takes similar definition of canonical labeling of graphs based
on the adjacency matrix. To increase the efficiency of de-
riving the canonical labels, the approach uses some graph
vertex invariants such as the degree of each vertex in the
graph. FSG also increases the efficiency of the candidate
generation of frequent subgraphs by introducing the trans-
action ID (TID) method. Furthermore, FSG limits the class
of the frequent subgraphs to connected graphs. Under this
limitation, FSG introduces an efficient search algorithm us-
ing “core”which is a shared part of the size k− 1 in the two
frequent subgraphs of the size k. FSG increases the joining
efficiency by limiting the common part of the two frequent
graphs to the core. Once the candidate set is obtained, their
frequency counting is conducted by checking the cardinality
of the intersection of both TID lists. FSG runs fast due to
the introduction of many techniques, but it consumes much
memory space to store TID lists for massive graph data.



More recently, DFS based canonical labeling approach called
gSpan (graph-based Substructure pattern mining) has been
proposed [24]. This approach also uses the idea of canonical
labeling which is derived from a coding scheme of a graph
representation. The main difference of the coding from the
other approach is that it uses a tree representation of each
graph instead of the adjacency matrix to define the code of
the graph as depicted in Fig. 7. Given a graph (a), various
quasi-tree expressions of the graph exist depending on the
way to take a root vertex among the vertices. (b), (c) and
(d) are the examples where the least number of edges to re-
move all cyclic paths are represented by dashed lines. Upon
this representation, starting from the root vertex, the code is
generated by following the lexicographical order of the labels
for the combinations of vertices and the edge bound by the
vertices. For example, the combinations of (v0, v1) with the
label (v0, v1, X, a, Y ) comes first in the code because this is
younger than dashed (v0, v2) having (v0, v2, X, a,X). Next,
starting from v1 which is the last vertex of the previous code
element, the youngest code element (v1, v2, Y, b,X) is cho-
sen. Then from the last v2, the element (v2, v0, X, a,X) is
chosen. When this trace returns to a vertex which is in-
volved in the previous code element, the trace backtracks
by one step, and the next younger element starting from
v2, i.e., (v2, v3, X, c, Z) is chosen. The subsequent elements
(v3, v1, Z, b, Y ) and (v1, v4, Y, d, Z) are traced in a recursive
manner. The sequence of these elements is called a code
of this quasi-tree expression. The other quasi-tree expres-
sions including (c) and (d) have their own codes respectively.
Among the codes, the quasi-tree expression having the mini-
mum code in terms of the lexicographical order is the canon-
ical form, and the corresponding code is the canonical label.
Because the code is derived in the DFS algorithm, this code
is called DFS code. Every graph in a data set is represented
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Figure 7: DFS coding of a graph.

by the multi-
ple codes in
this manner.
Then all codes
are sorted ac-
cording to as-
cending lexico-
graphical order,
and the match-
ing of the codes
starting from
the first ele-
ments among
the codes are conducted by using DFS in the sorted order.
This means that the search trees of the DFS matching are
ordered trees where the left branch is always younger than
the right branch. Accordingly, when the branch representing
a subgraph which is identical to the subgraph previously vis-
ited in the ordered tree search are found, the further DFS in
the search tree can be pruned. By applying this DFS coding
and DFS search, gSpan can derive complete set of frequent
subgraphs over a given minsup in a very efficient manner in
both computational time and memory consumption.

3.5 Kernel Function Based Approach
As explained in the last paragraph in subsection 2.3, a kernel
function K defines a similarity between two graphs Gx and
Gy. For the application to graph-based data mining, the key
issue is to find the good combinations of the feature vector

XG and the mapping φ : XG → H to define appropriate sim-
ilarity under abstracted inner product< φ(XGx), φ(XGy) >.
A recent study proposed a composition of a kernel function
characterizing the similarity between two graphs Gx and Gy

based on the feature vectors consisting of graph invariants
of vertex labels and edge labels in the certain neighbor area
of each vertex [13]. This is used to classify the graphs into
binary classes by SVM mentioned in subsection 2.5. Given
training data consisting of graphs having binary class, the
SVM is trained to classify each graph. Though the simi-
larity is not complete and sound in terms of the graph iso-
morphism, the graphs are classified properly based on the
similarity defined by the kernel function.

Another framework of kernel function related with graph
structures is called “diffusion kernel” [14]. Though this is
not dedicated to graph-based data mining, each instance is
assigned to a vertex in a graph structure, and the similarity
between instances is evaluated under the diffusion process
along the edges of the graph. Some experiments report that
the similarity evaluation in the structure characterizing the
relations among the instances provides better performance
in classification and clustering tasks than the distance based
similarity evaluation. This type of work is supposed to have
some theoretical relation with graph-based data mining [7].

4. DISCUSSION AND SUMMARY
There are many other studies related to graph mining. Geibel
and Wysotzki proposed a method to derive induced sub-
graphs of graph data and to use the induced subgraphs as
attributes on decision tree approaches [9]. Their method
can be used to find frequent induced subgraphs in the set
of graph data. However, the upper limit number of the ver-
tices to be included in the subgraph must be initially speci-
fied to avoid the exponential explosion of the computational
time, and thus the search is not complete. Liquiere and Sal-
lantin proposed a method to completely search homomor-
phically equivalent subgraphs which are the least general
over a given set of graphs and do not include any identical
triplet of the labels of two vertices and the edge direction
between the vertices within each subgraph [16]. They show
that the computational complexity to find this class of sub-
graphs is polynomial for 1/2 locally injective graphs where
the labels of any two vertices pointing to another common
node or pointed from another common vertex are not iden-
tical. However, many graphs appearing in real-world prob-
lems such as chemical compound analysis are more general,
and hence the polynomial characteristics of this approach do
not apply in real cases. In addition, this approach may miss
many interesting and/or useful subgraph patterns since the
homomorphically equivalent subgraph is a small subclass of
the general subgraph.

In this review article, the theoretical basis of the graph-
based data mining was explained from multiple point of
views such as subgraph types, subgraph isomorphism prob-
lem, graph invariants, mining measures and search algo-
rithms. Then, representative graph-based data mining ap-
proaches were shown in the latter half of this article. Even
from theoretical perspective, many open questions on the
graph characteristics and the isomorphism complexity re-
main. This research field provides many attractive topics in
both theory and application, and is expected to be one of
the key fields in data mining research.
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