TOQL Manual

Table of contents

TOOBIS
TOQL User’s Guide
Deliverable T32D.2

UNIV. OF ATHENS
01-PLIROFORIKI S.A.

O2 Technology

February 1998

51
Introduction

2
Getting Started with Non‑Temporal Features
9
2.1
Basic Queries
9
2.1.1
Database entry points
9
2.1.2
Simple queries
9
2.2
Select … from … where
10
2.2.1
Bags and sets
10
2.2.2
Join
11
2.2.3
Path expressions
11
2.2.4
Testing on nil
11
2.2.5
List or array
12
2.3
Constructing Query Results
12
2.3.1
Creating an object
13
2.4
Operators
13
2.4.1
Count
13
2.4.2
Element
13
2.4.3
Exists
13
2.4.4
Group by
14
2.4.5
Like
14
2.4.6
Order by
14
2.5
Set Operators
14
2.6
Conversions
15
2.7
Combining Operators
15
2.8
Chapter Summary
15
3
TOQL Rationale
17
3.1
TOQL by Example
17
3.1.1
Path expressions
17
3.1.2
Data manipulation
18
3.1.3
Method invocation
19
3.1.4
Polymorphism
19
3.1.5
Operator composition
20
4
TOQL Reference
22
4.1
Introduction
22
4.2
Query Input and Result
22
4.3
Dealing with Object Identity
23
4.3.1
Creating objects
24
4.3.2
Selecting existing objects
24
4.4
Language Description for Non-Temporal Characteristics
24
4.4.1
Queries
25
4.4.2
Elementary expressions
25
Atomic literals
25
Named objects
26
Iterator variable
26
Named query
26
4.4.3
Construction expressions
26
Constructing objects
26
Constructing structures
27
Constructing sets
27
Constructing lists
27
Constructing Bags
28
Constructing Arrays
28
4.4.4
Atomic type expressions
28
Unary expressions
28
Binary expressions
29
String expressions
30
4.4.5
Object expressions
30
Comparison of objects
30
Comparison of literals
31
Extracting an attribute or traversing a relationship from an object
31
Applying an operation to an object
31
Applying an operation with parameters to an object
31
4.4.6
Collection expressions
32
Universal quantification
32
Existential quantification
32
Membership testing
32
Aggregate operators
33
4.4.7
Select-from-where
33
Group-by operator
34
4.4.8
Order-by operator
36
4.4.9
Indexed collection expressions
36
Getting the ith Element of an indexed collection
36
Extracting a sub-collection of an indexed collection.
36
Getting the first and last element of a collection
37
Concatenating two indexed collections
37
4.4.10
Binary set expressions
37
Union, intersection, difference
37
Inclusion
38
4.4.11
Conversion expressions
38
Extracting the element of a singleton
38
Turning a list into a set
38
Flattening collection of collections
38
4.4.12
Typing an expression
39
4.4.13
Function call
40
4.4.14
Scope rules
40
4.4.15
Syntactical abbreviations
41
Structure construction
42
Composite predicates
42
5
ΤOQL Temporal Extension
43
5.1
Data types for Time Representation
44
5.1.1
Literals
45
Instants
45
Intervals
46
Periods
47
Period sets
48
5.1.2
Functions
49
5.1.3
Predicates
56
5.1.4
Operators
57
5.2
Simple Queries on Temporal Data
60
5.2.1
Temporal modifiers
61
The snapshot modifier
62
The valid modifier
62
The transaction modifier
62
The bitemporal modifier
63
5.2.2
Temporal data as indexed collections
63
Expressions for valid state objects not allowing overlapping timestamps and valid event objects
63
Expressions for valid state objects that allow overlapping timestamps
65
Expressions for transaction time objects
67
Expressions for bitemporal objects not allowing overlapping valid timestamps and bitemporal event objects
68
Expressions for bitemporal objects that allow overlapping valid timestamps
70
5.2.3
Extracting object states
72
5.2.4
Semantic ambiguity resolution
73
5.3
Referencing Variants of Temporal Data
74
5.4
Constructing Temporal Values
77
5.4.1
The valid constuctor
77
5.4.2
The transaction constructor
78
5.4.3
The bitemporal constructor
78
5.5
Temporal Joins
79
Implementation note
80
5.6
Restructuring Operators
80
5.6.1
Converting period timestamping variants to instant timestamping
81
5.6.2
Producing maximal timestamps
82
5.7
Temporal grouping
84
5.7.1
Partitioning a single temporal object into variant subsets
84
5.7.2
Combining variants from multiple temporal objects
88
Appendix A TOQL BNF
90
Appendix B: Reserved words
93
Appendix C: References
94
Appendix D: TOQL Installation
95

1 Introduction

Welcome to TOQL – a query language that incorporates Temporal and Object Oriented Databases.

TOQL is based on OQL – the ODMG-provided standard for Object Oriented Databases – and extents it to incorporate temporal characteristics. TOQL stands for Temporal Object Query Language.

In the following chapters we are going to present both temporal and non-temporal features of TOQL. In the first part of this manual we present the non-temporal characteristics of TOQL. Actually, this is equivalent to OQL V.1.2, so any OQL V.1.2 manual is equivalent to this. In the second part we present the temporal characteristics of TOQL.

In the next paragraphs we present the TODL definitions for the persistent objects on which the example queries are going to be performed. Declarations are presented in TODL ([T35TR1]), a temporal extension to ODL ([ODMG1]). The interested reader is also referred to the TODM (Temporal Object Data Model) specification [T31TR1] and user guide [T34TR1].

interface Person

(extent Persons)

{

attribute String name;

attribute Instant birthdate granularity day;

attribute char sex;

relationship Set<Person> parent inverse Person::children;

relationship List<Person> children

inverse Person::parents;

relationship Apartment lives_in

inverse Apartment::is_used_by;

relationship Set<Person> ancestors;

Person();

short age();

void marriage(Person spouse);

void birth(Person child);

Set<String> activities();

};

interface Employee: Person

(extent the_employees)

{

attribute unsigned short salary;

attribute short id;

attribute short deptno;

relationship set<Employee> subordinates

inverse Employee::boss;

relationship Employee boss

inverse Employee:subordinates;

set<String> activities();

string seniority();

void hire();

void fire() raises (no_such_employee);

};

interface Professor: Person

(extent profesors)

{

attribute enum Rank { full, associate, assistant } rank;

relationship set<Section> teaches

inverse Section::is_taught_by;

short grant_tenure() raises (ineligible_for_tenure);

};

interface TA: Employee, Student

(extent TAs)

{

relationship Section assists inverse Section::has_TA;

};

interface Student

(
extent students,

keys name, student_id)

{

attribute string name;

attribute string student_id;

attribute struct Address {string college,

string room_number} dorm_address;

relationship set<Section> takes

inverse Section::is_taken_by;

boolean register_for_course(in unsigned short course,

in unsigned short Section)

raises (unsatisfied_prerequisites,

section_full, course_full);

void drop_course(in unsigned short Course)

raises (not_registered_for_that_course);

void assign_major(in unsigned short Department);

short transfer(in unsigned short old_section,

in unsigned short new_section)

raises (section_full,

not_registed_in_section);

};

interface Course

(
extent courses

keys name, number)

{

attribute string name;

attribute string number;

relationship list<Section> has_sections

inverse Section::is_section_of

{ order_by Section::number };

relationship set<Course> requires

inverse Course::is_prerequisite_for;

relationship set<Course> is_prerequisite_for

inverse Course::requires;

boolean offer(in unsigned short semester)

raises (already_offered);

boolean drop(in unsigned short semester)

raises (not_offered);

};

interface Section

(
extent sections

key (is_section_of, number))

{

attribute string number;

relationship Professor is_taught_by

inverse Professor::teaches;

relationship TA has_TA inverse TA::assists;

relationship Course is_section_of

inverse Course::has_sections;

relationship set<Student> is_taken_by

inverse Student::takes;

};

interface Address

{

attribute short number;

attribute String street;

};

interface Building

{

relationship Address address;

relationship List<Apartment> apartments

inverse Apartment::building;

Apartment less_expensive();

};

interface Apartment (extent Apartments)

{

attribute short number;

relationship Building building

inverse Building::apartments;

relationship Person is_used_by inverse Person::lives_in;

};

interface Company (extent TheCompanies)

{

attribute String name;

relationship Set<Employee> employees;

relationship List<Client> clients;

String title();

};

For simplicity in our examples, we will consider an additional entry point to the database. This entry point is named “Globe” and contains a single instance of the class “Company”, corresponding to the company “International Globe”

interface Client: Person

(extent TheClients)

{

relationship set<Item> order;

};

interface Item

{

attribute String what;

attribute float price;

};

2 Getting Started with
Non‑Temporal Features

This section of the manual describes the non-temporal features of TOQL, that is the OQL-equivalent part of the language. This chapter introduces the basic characteristics of this language and is divided up into the following parts:

· Basic queries

· select…from ….where

· Constructing results

· Operators

· Set operators

· Conversions

· Combining operators

2.1 Basic Queries

All the examples shown below are based on the O2 schema defined in the introduction.

2.1.1 Database entry points

To query any database you need various entry points. In TOQL, these are the extents of interfaces. Each extent stores all persistent instances of the corresponding interface. For example, the_employees is an entry point, the extent of the Employee class.

The simplest TOQL query calls an entry point:

the_employees

and it returns a set of employees: set<Employee>.

2.1.2 Simple queries

Simple queries can involve different types of values:

· Atomic values

2 * 2

This is a query that returns the integer 4.

· Struct values

You can consider the value of an instance of class Company e.g. Globe as a struct (or type) value with three attributes.

The only operation you can carry our on a struct is extracting a field, e.g.,

Globe.name

This returns the name of the Globe company.

· List or array values

A list is an ordered collection that allows duplicates and you can therefore extract any of its elements if you know their position.

For example, you can extract the first element of the clients of the Globe company as follows.

Globe.clients[0]

(in TOQL, you count list elements from 0). Note also that an array behaves the same way as a list.

· Call of a method

Applying a method to an object is a basic query, e.g.

Globe.title()

This applies the method title to the object Globe and returns the result of the method title.
2.2 Select … from … where

The select/from/where clause enables you to extract those elements meeting a specific condition from a collection. Collections include set, bag (a multi-set or set with duplicates), list (an insertable and dynamic array) or array.

The TOQL query has the following structure:

select:
defines the structure of the query result

from:

introduces the collections against which the query runs.

where:

introduces a predicate that filters the collection.

This section describes how to use this clause.

2.2.1 Bags and sets

Bags and sets are non-ordered collections. The most frequent query on a set or a bag is a filter. This consists of extracting the elements of a set or bag that have certain characteristics.

For example:

select e

from Globe.employees as e
where e.salary > 200.00
This query returns those employees working at the International Globe with a salary over 200.

The from clause defines the set on which the query is run. Variable e represents each of its elements in turn. The where clause filters the employees so that those earning more than 200 are extracted. Finally, the select clause defines the query result.

This query therefore builds a collection of employees. This collection is in fact a bag as duplicates are accepted. You can also add the keyword distinct to a selection to eliminate any duplicates from the resulting bag, producing thus a set.
Moreover, you can access from e any attributes, e.g. salary and get a set of real numbers. For example:

select distinct e.salary

from the_employees as e
where e.position = “Reporter”
This gives a set of the salaries of the reporters.

2.2.2 Join

You can also use a query to select from more than one collection:

select e

from the_employees as e, the_clients as c
where e.name = c.name
(where the_client is the extent of the Client interface)

This query returns the set of employees who have the same name as a client. That is if there is a client called Kent and an employee with the same name, then the data for this employee are included in the query result.

2.2.3 Path expressions

Objects are generally related to other objects, and in order to get to the needed data, a query can follow various paths that start from any object or collection. For example,

select distinct order.what

from the_clients as cl, cl_order as order
where cl.name = “Haddock”
You obtain the set of what the client(s) called Haddock bought.

2.2.4 Testing on nil

After your application has updated the database, you may find that some objects are now equal to nil. You can test for this using TOQL. For example, you can test that a client object actually contains any data and if so, if this object has three orders:

select c.name

from the_clients as c
where c != nil and count(c.order) = 3

2.2.5 List or array

A list or an array is an ordered collection that can contain duplicate elements. Since it is ordered, you may extract any of its elements if you know their position. For example:

Globe.clients[2]

This extracts the third element of the list (the first element is at position 0).

As with sets you can also filter a list. For example: what are the names of the clients who buy the International Globe newspaper?

select e.name

from Globe.clients as e
The result of this query is a bag containing the names of Globe clients:

You can also add the keyword distinct to a selection to eliminate any duplicates from the resulting list.

Note
You can manipulate very complex structures. A list can be made up of structs that in turn can have a set attribute, etc. Consequently, you have access to all the embedded components of an object.

For more details, refer to Section 2.3 for constructing query results and Section 2.7 for combining operators.

2.3 Constructing Query Results

The structure of a query result is very often implicit. For example, when you extract the age field of an employee, which is of type integer, you obtain an integer. Generally, when filtering a collection you obtain a bag
. However, you can also construct a query result with an explicit structure using the struct, set, bag, list and array constructors.

For example, using the struct constructor:

select struct (employee: e.name,

Position: e.position,

Salary: e.salary)

from the_employees as e
This query gives the name, position and salary of the employees.

You can also build up embedded structures simply by combining operators. For example, to get the names and salaries of all the employees working as reporters and are older than 22.

select struct (employee: struct (name: e.name, age: e.age),

Salary: e. salary)

from the_employees as e
where e.position = “Reporter” and e.age > 22
This query returns a bag whose elements are structures. Each structure has two fields: the second one is named Salary and is a float, while the first is itself a structure named employee and has two fields: one named name of type string and one named age of type short.

2.3.1 Creating an object

You create values using struct, list, array, bag and set. In TOQL, you can also create objects using the class name and by initialising the attributes of your choice. Any not initialised attributes are set to the default value. For example, to create an object of the class Client.

Client (name: “Trent”)

This creates a temporary object with the name attribute initialised to Trent.
2.4 Operators

This section outlines the basic TOQL operators you can use to query the database.

2.4.1 Count

You can query the database using the count clause. For example, to find out how many employees there are in the database you can issue the query:

count(the_employees)
This query returns an integer.

Other aggregate operators are min, max, sum and avg.

2.4.2 Element

When you have a set or a bag that contains a single element, you can extract the element directly using the element operator. For example,

element(
select e

from the_employees as e

where e.name = “Tintin”)

This query returns a single instance of the class Employee, corresponding to the employee named Tintin. If multiple or no employees with this name exist, the query fails.

2.4.3 Exists

More complex queries can be carried out, such as select which company has at least one employee under the age of 23:

select c.name

from TheCompanies as c
where exists e in c.employees: e.age < 23
The answer is a list of names.

2.4.4 Group by

This operator groups together objects of a collection that share specific characteristics. For example,

select e

from the_employees as e

group by e.salary as salary

This groups the the_employees collection by salary giving a set of two-attribute tuples:

The first attribute is the salary and is called salary as specified. The second is the set of objects (employees) with the same salary and is called partition (default and non-changeable value).

Thus, the type of the result of this query is:

bag<struct(salary: float, partition: bag<struct(e: Employee)>)>

2.4.5 Like

The like operator allows you to test part of a character string. The “*” character stands for any string including the empty string.

The query:

select distinct e.salary

from the_employees as e
where e.name like “Sp*”

returns the salary (or salaries) of all the employee(s) whose name begins with Sp.
2.4.6 Order by

You can obtain a sorted list using the order by clause. For example, to sort the employees by name and by age:

select e from the_employees as e

order by e.name, e.age asc

The result of an order by operation is always a list, even though the source of the objects to sort (the set the_employees, in this case) may be a set.

This query returns a list of employees; their order is alphabetical by name, and then ordered by age.

2.5 Set Operators

The standard set operators are defined on set and bag: union, intersect (intersection) and except (difference). You can also write these operators as + (union), * (intersection) and – (difference).
(select e from the_employees as e where deptno = 2)

union

(select e from the_employees as e where salary > 200000)

The simple addition (union) of the two sets of employees gives a set containing the employees belonging to either set.

You can also compute the intersection (*) and the difference (-) between two sets.

2.6 Conversions

To convert a list or array to a set you use the listtoset operator.

Example:

listtoset(Globe.clients) intersect Globe.employees
To convert a collection of collections into a flattened collection you use the flatten operator.

For example, the query

flatten (select distinct c.clients

from TheCompanies as c)

returns a set of clients.

2.7 Combining Operators

TOQL is a completely functional language in that every operator can be combined with any other operator. You can use, combine and build up operators, universal and existential quantifiers, wild-card operators on sets, bags and lists.

For example:

select struct (Name: cl.name,

paid: sum(select p.price from cl.order as p))

from TheClients as cl
where count(cl.order) > 2

order by sum(select p.price from cl.order as p)

This sorts all the clients, with more than two orders, by how much they have paid to the company.
2.8 Chapter Summary

This chapter has covered the following points:

· Basic queries

To query any database you need various entry points. In TOQL these are the extents.

Simple queries include calling an entry point, applying a method to an object, extracting a field, etc.

· select…from…where

The select…from…where clause enables you to extract those elements meeting a specific condition from a collection.

· Constructing results

The structure of a query result is very often implicit. However, you can also construct a query result with an explicit structure using the struct, set, bag and list constructors.

· Operators

TOQL operators include element, sort, count, exists, group by and like. They can be combined together for more complex queries.

3 TOQL Rationale

Most commercial object database systems now have a common data model based on the OMG object model. This data model is defined in the ODMG 93 report [ODMG1]. The query language TOQL has been defined, based on this ODMG model and its TODM extension [T31TR1].

In this chapter we present TOQL by example for non-temporal queries.

3.1 TOQL by Example

We are now going to present TOQL based on examples. We use the database described in the previous section, and instead of trying to be exhaustive, we give an overview of the most relevant features.

3.1.1 Path expressions

As explained above, one can enter a database through a named object, but more generally as soon as one gets an object (which comes, for instance, from a C++ expression), one needs a way to “navigate” from it and reach the data one needs. To do this in TOQL, we use the "." (or indifferently "->") notation which enables us to go inside complex objects, as well as to follow simple relationships. For instance, given a Person p we can extract the name of the street where this person lives, using the following TOQL query:

p.lives_in.building.address.street

This query starts from a Person, traverses an Apartment, arrives at a Building and goes inside the complex attribute of type Address to get the street name.

This example treated an one to one relationship. Let us now look at relationships of higher cardinality. Assume we want the names of the children of the person p. We cannot write:

p.children.name

because children is a list of references, so the interpretation of the result of this query would be undefined. Intuitively, the result should be a collection of names, but we need an unambiguous notation to traverse a multiple relationship like that and we use the select-from-where clause to handle collections, just as in SQL.

select c.name

from p.children as c
The result of this query is a value of type Bag<String>. If we want to get a Set, we simply drop duplicates, like in SQL, by using the distinct keyword.

select distinct c.name

from p.children as c
Now we have means to navigate from any object to any other object following any relationship and entering any complex sub-values of an object.

For instance, we want the set of addresses of the children of each Person in the database. We know that the collection named Persons contains all persons in the database. We have now to traverse two collections: Persons and Persons.children. Like in SQL, the select-from operator allows us to query more than one collections. These collections appear in the from part. In TOQL, a collection in the from part can be derived from a previous one by following a path which starts from it. For example:

select c.lives_in.building.address
from Person as p, p.children as c
This query inspects all children of all persons. The result type is Bag<Address>.

· Predicate

Of course, the where clause can be used to define any predicate which then serves to select the data matching the predicate. For instance, to find people who have more than two children and live in Main Street, and then calculate the addresses of their children who do not live with their parents, we could formulate the following query:

select c.lives_in.building.address
from Persons as p, p.children as c
where p.lives_in.building.address.street = “Main Street” and

count(p.children) >= 2 and

c.lives_in != p.lives_in
· Join

In the from clause, collections which are not directly related can also be declared. As in SQL, this allows us to compute “joins” between these collections. For instance, to find the people living in a street and having the same name as this street, we do the following: the Building extent is not defined in the schema, so we have to compute it from the Apartments extent. To compute this intermediate result, we need a select-from operator again. So the join is done as follows:

select p

from Persons as p,

(select distinct a.building

 from Apartments as a) as b
where p.name = b.address.street
3.1.2 Data manipulation

A major difference between TOQL and SQL is that object query languages must manipulate complex values. TOQL can therefore create any complex value as a final result, or inside the query as intermediate computation.

To build a complex value, TOQL uses the constructors struct, set, bag, list and array
. For example, to obtain the name and addresses of the children of each person, along with the name and address of this person, we use the following query:

select struct(me: p.name, my_address: p.lives_in.building.address,

 my_children:(select struct(name: c.name,

address: c.lives_in.building.address)

from p.children as c))

from Persons as p

This gives, for each person, the name, the address, and the name and address of each child. The type of the result is a bag of the following struct:

struct{String name; String my_address;

Bag<struct{String name; Address address}> my_children;}

TOQL can also create complex objects. For this purpose, it uses the name of a class as a constructor. Attributes of the object of this class can be initialised explicitly by any valid expression.

3.1.3 Method invocation
TOQL allows method calls with or without parameters anywhere the result type of the method matches the expected type in the query. In case the method has no parameters, it is followed by two parentheses (opening and closing); these parentheses may also be omitted. If the method has parameters, these are given between parentheses. For instance, to get the age of the oldest child of “Paul”, we write the following query:

select max(select c.age()

from p.children as c)
from Persons as p,

where p.name = “Paul”
Of course, a method can return a complex object or a collection and its call can be embedded in a complex path expression. For instance, inside a building b, to know who inhabits the least expensive apartment, we use the following path expression:

b.less_expensive().is_used_by.name

3.1.4 Polymorphism

A major contribution of object technology is the possibility of manipulating polymorphic collections, and thanks to the “late binding” mechanism, to carry out generic actions on the elements of these collections. For instance, the set Persons contains objects of class Person and Employee. So far, all the queries against the Persons extent dealt with the three possible classes of objects of the collection. A query is an expression whose operators operate on typed operands. It is correct if the type of operands matches those required by the operators. In this sense, TOQL is a typed query language. When a polymorphic collection is filtered (for instance Person) its elements are statically known to be of that class (for instance Person). This means that a property of a subclass (attribute or method) cannot be applied to such an element, except in two important cases: late binding to a method, or explicit class indication.

· Late binding

To list the activities of each person, we use the following query:

select p.activities()
from Persons as p

activities is a method which has 2 implementations, one for Employee and one for generic Person. Depending on the kind of person of the current p, the right implementation is called.

· Class indicator

To go down the class hierarchy, a user may explicitly declare the class of an object that cannot be inferred statically. During query evaluation it is checked that the object actually belongs to the indicated class (or one of its subclasses).

For example, assuming we know that only “students” spend their time in following a course of study, we can select those persons and get their grade. We explicitly indicate in the query that these persons are students:

select (Student)p.grade
from Persons as p

where “course of study” in p.activities
3.1.5 Operator composition

TOQL is a purely functional language: all operators can be composed freely as long as the type system is respected. This philosophy is different from SQL, which is an ad-hoc language whose composition rules are not orthogonal. Adopting a complete orthogonality, allows us not to restrict the power of expression and makes the language easier to learn without losing the TOQL style for the simplest queries. Among the operators offered by TOQL but not yet introduced, we can mention the set operators (union, intersect, except), the universal (for all) and existential (exists) quantifiers, the sort and group by operators and the aggregate operators (count, sum, min, max and avg). To illustrate this free composition of operators, let us write a rather elaborate query. We want to know the name of the street where the set of employees living on that street and have the smallest average salary, compared to the sets of employees living in other streets. We proceed step by step, assigning symbolic names to query results.

1. Build another extent of class Employee (not supported directly by the schema)

select (Employee) p

from Persons as p

where “has a job” in p.activities

We name the result of this query “Employees”

2. Group the employees by street and compare the average salary in each street

select street, avg(select x.salary from partition as x)

as average_salary
from Employees as e
group by e.lives_in.building.address.street as street
We name the result of the query “salary_map”. The group by operators splits the employees into partitions, according to the criterion (the name of the street where this person lives).The select clause computes for each such group, the average of the salaries of the employees belonging to each partition and returns it, along with the street name.

The result of the query is of type:

Bag<struct(String street; float average_salary;)>

3. Sort this set by salary

select s

from salary_map as s
order by s.average_salary asc

We name the result of the query “sorted_salary_map”.

The result is of type:

List<struct{String street; float average_salary;}>

The asc keyword in the order by clause designates that sorting should be performed in ascending order, i.e. the smallest value should be placed first.

4. Now extract the smallest salary (the first in the list) and take the corresponding street name. This is the final result.

sorted_salary_map[0].street

In a single query, we could have written:

(select street, avg(select x.salary from partition as x)

as average_salary

 from (select (Employee)p from Person as p

 where “has a job” in p.activities) as e

 group by e.lives_in.building.address.street as street
 order by average_salary)[0].street

4 TOQL Reference

This chapter gives the full information of the non-temporal part of TOQL.

It is divided up into the following sections:

· Introduction

· Principles

· Query Input and Result

· Dealing with Object Identity

· Language Description for Non-Temporal Characteristics

4.1 Introduction

In this chapter, we describe the non-temporal characteristics of TOQL, based on OQL v.1.2. It is complete and simple. It deals with complex objects without privileging the set construct and the select-from-where clause.

We first describe the input and result of a query in Section 4.2
Section 4.3 deals with object identity and Section 4.4 gives a full description of the non-temporal features of the language: for each feature of the language, we give the syntax, informal semantics, and an example. The temporal characteristics of the language and its BNF will be presented in following sections.

4.2 Query Input and Result

As a stand-alone language, TOQL allows you to query denotable objects starting from their names, which act as entry points into a database. A name may denote any kind of object, i.e., atomic, structure, collection, or literal.

As an embedded language, TOQL allows you to query denotable objects, which are supported by the native language through expressions yielding atoms, structures, collections, and literals. A TOQL query is a function which, when applied to this input, delivers an object whose type may be inferred from the operator contributing to the query expression. This point is illustrated with two short examples.

The schema defines the types Person and Employee. These types have the extents Persons and the_employees respectively. One of these persons is the chairman (and let’s also assume that there exists an entry-point Chairman to that person). The class Person defines the name, birthdate, and sex as attributes and the operation age. The class Employee, a subclass of Person, defines the attribute salary, the relationship subordinates and the operation seniority.

The following query selects the set of ages of all persons named John. Thus, the query returns a literal of type set<short>.
select distinct x.age

from Persons as x

where x.name = “John”

The following query does about the same, but for each person, it builds a structure containing age and sex. It turns a literal of type set<struct(a: short, n: string)>.

select distinct struct(a: x.age, n: x.name)

from Persons as x

where x.name = “John”
The following query is the same type of example, but now we use a more complex function. For each employee we build a structure with the name of the employee and the set of the employee’s highly paid subordinates. Notice we have used a select-from-where clause in the select part. For each employee x, to compute hps, we traverse the relationship subordinates and select among this set the employees with a salary superior to $100,000.

select distinct struct(name: x.name,

hps: (select y

from x.subordinates as y

where y.salary > 100000))
from the_employees as x
The result of this query is therefore a literal of the type set<struct>:

set<struct(name: string, hps: bag<Employee>)>

We could also use a select operator in the from part:

select struct(a: x.age, n: x.name)

from (select y from Employees as y

where y.seniority = ”10“) as x
where x.name = ”John”
Of course, you do not always have to use a select-from-where clause:

Chairman

Retrieves the Chairman object.

Chairman.subordinates

Retrieves the set of subordinates of the Chairman.

Persons

Gives the set all Persons.

4.3 Dealing with Object Identity

The query language supports both objects (i.e., having an OID - object identity) and literals (identity equals their value), depending on the way these objects are constructed or selected.

4.3.1 Creating objects

To create an object with identity, a type name constructor is used. For instance, to create a Person defined in the previous example, simply write

Person(name: “John”, birthdate: “3/28/56”, salary: 100000)

The parameters in parenthesis allow you to initialise certain properties of the object. Those that are not explicitly initialised are given a default value.

You distinguish such a construction from the construction expressions that yield objects without identity. For instance,

struct(a: 10, b: “John”)

creates a structure with two fields.

4.3.2 Selecting existing objects

The extraction expressions may return

· A collection of objects with identity, e.g.

select x from Persons as x where x.name =”John”

returns a collection of persons whose name is John.

· An object with identity, e.g.

element(select x from Persons as x where x.passport_number=1234567)

returns the person whose passport number is 1234567.

· A collection of literals, e.g.

select x.passport_number from Persons as x where x.name=”John”

returns a collection of integers giving the passport numbers of people named John.

· A literal, e.g.,

Chairman.salary

Therefore the result of a query is an object with or without object identity, some of them generated by the query language interpreter and some of them produced by the current database.

4.4 Language Description for Non-Temporal Characteristics

TOQL is an expression language. A query expression is built from typed operands composed recursively by operators. In this section, we will use the term expression to designate a valid query. An expression returns a result that can be an object or a literal.

TOQL is a typed language. This means that each query expression has a type. This type can be derived from the structure of the query expression and the schema type declarations. The type is checked against the schema for correctness.

For each query expression, we give the rules that allow to

· check for type correctness and

· deduct the type of the expression from the type of the sub-expressions.

For collections, we need the following definition: Types t1, t2, …, tn are compatible if elements of these types can be put in the same collection as defined in the object model.

Compatibility is recursively defined as follows:

(1) t is compatible with t
(2) if t is compatible with t’ then

set(t) is compatible with set(t’)
bag(t) is compatible with bag(t’)
list(t) is compatible with list(t’)
array(t) is compatible with array(t’)
(3) if there exists t such t is a super-type of t1 and t2, then t1 and t2 are compatible.

This means in particular that:

· literal types are not compatible with object types.

· atomic literal types are compatible only if they are the same.

· structured literal types are compatible only if they have a common ancestor

· collections of literal types are compatible if they are of the same collection and the types of their members are compatible.

· atomic object types are compatible only if they have a common ancestor.

· collections of object types are compatible if they are of the same collection type and the types of their members are compatible.

Note that if t1, t2, …., tn are compatible, then there exists a unique t such that:

· (1) t > ti for all i's

· (2) for all t’ such that t’ != t and t’ > ti for all i’s, t’ > t
This t is denoted lub(t1, t2, …, tn) where lub stands for lowest upper bound and denotes the common ancestor of types t1, t2, …, tn which is located at the lowest level than all other common ancestors in the type hierarchy.

The examples are based on the schema described in Paragraph 1 “Introduction”.

4.4.1 Queries

A query is a query expression with no bound variables.

4.4.2 Elementary expressions

Atomic literals

If I is an atomic literal, then I is an expression whose value is the literal itself. Literals have the usual syntax:

· Object Literal: nil
· Boolean Literal: false, true
· Integer Literal: sequence of digits, e.g. 27
· Float Literal: mantissa/exponent. The exponent is optional, e.g. 3.14 or 314.16e-2
· Character Literal: character between single quotes, e.g., ‘z’

· String Literal: character string between double quotes, e.g., “a string”

Named objects

If e is an object name, then e is an expression. It returns the entity attached to the name. The type of e is the type of the named object, as declared in the database schema.

Example:

students

This query returns the set of Students. “Students” has been declared to be the extent of class Student.

Iterator variable

If x is a variable declared in the from part of a select-from-where, then x is an expression representing the current element of the iteration over the corresponding collection.

If x is declared in the from part of a select-from-where expression by a statement of the form

e as x

or

e x

where e is of type collection(t), then x is of type t.

Named query

If we define q as e is a query definition expression, then q is an expression. The type of q is the type of e.

Example:

Globe

This query returns object corresponding to the company “International Globe”

4.4.3 Construction expressions

Constructing objects

If t is a type name, p1, p2, …, pn are properties of this type with respective types t1, t2, …, tn and e1, e2, …, en are expressions of type t1, t2, …, tn, respectively, then t(p1: e1, p2: e2, …., pn: en) is an expression of type t.

This returns a new object of type t, whose properties p1,p2, …, pn are initialised with the expressions e1, e2, …, en. The type of ei must be compatible with the type of pi.

If t is a type name of a collection and e is a collection literal, then t(e) is a collection object. The type of e must be compatible with t.

Examples:

Employee(name: “Peter”, boss: Chairman)

This creates an Employee object.

Note

The name t designates a class name. The constructors of the class are not called.

Constructing structures

If p1, p2, …, pn are property names, and e1, e2, …, en are expressions with types t1, t2, …, tn, then

struct(p1: e1, p2: e2, …, pn: en)

is an expression of type struct(p1: t1, p2: t2, …, pn: tn). It creates the structure assigning values e1, e2…, en to properties p1, p2, …, pn.
Note that this dynamically creates an instance of the type struct(p1: t1, p2: t2, …, pn: tn) where ti is the type of ei.

Example:

struct(name: “Peter”, age: 25)

This returns a structure with two attributes name and age, assigning to them the values Peter and 25, respectively.

Constructing sets

If e1, e2, …, en are expressions of compatible types t1, t2, …, tn, then set(e1, e2, …, en) is an expression of type set(t), where t = lub(t1, t2, …, tn). It creates the set containing the elements e1, e2, …, en.

Example:

set(1,2,3)

This returns a set of long consisting of the three elements 1, 2, and 3.

Constructing lists

If e1, e2, …, en are expressions of compatible types t1, t2, …, tn, then list(e1, e2, …, en) or simply (e1, e2, …, en) is an expression of type list(t) where t = lub (t1, t2, …, tn). It creates the list having elements e1, e2, …, en.
Example:
list(1,2,2,3)

This returns a list of longs consisting of four elements.

If min, max are two expressions of integer or character types, such that min < max, then list(min..max) or simply (min..max) is an expression with value: list(min, min+1,… max-1, max).

The type of list(min..max) is list(int
) or list(char), depending of the type of min.

Example:

list(3..5)

This returns the list (3, 4, 5)

Constructing Bags

If e1, e2, …, en are expressions of compatible types t1, t2, …, tn, then bag(e1, e2, …, en) is an expression of type bag(t) where t = lub (t1, t2, …, tn). It creates the bag having elements e1, e2, …, en .

Example:

bag(1,1,1,2,3)

This returns a bag of five elements.

Constructing Arrays

If e1, e2, …, en are expressions of compatible types t1, t2, …, tn, then array(e1, e2, …en) is an expression of type array(t) where t = lub(t1, t2, …, tn). It creates an array having elements e1, e2, …,en.

Example:

array(3,4,2,1,1)

This returns an array of five elements.

4.4.4 Atomic type expressions

Unary expressions

If e is an expression and <op> is a unary operator valid for the type of e, then <op> e is an expression. It returns the result of applying <op> to e

Table AUTONUM Unary Operators

Arithmetic unary operators:
+, -, abs

Boolean unary operator:
Not

Other unary operator:
*

Example:

not(true)

This returns false.

If <op> is +, - or abs, and if e is a type integer
 or float, then <op> e is of type e
If e is of type boolean, then not e is of type boolean.

If e is of type object, then *e returns the value of the object.

Binary expressions

If e1 and e2 are expressions and <op> is a binary operator, then e1 <op> e2 is an expression. It returns the result of applying <op> to e1 and e2.

Table AUTONUM Binary operators

Arithmetic integer binary operators:
+, -, *, /, mod (modulo), <<, >>

Floating point binary operators:
=, -, *, /

Relational binary operators:
=, !=, <, <=, >, >=

Boolean binary operators:
And, or

Example:

count(Students) – count(TAs)

This returns the difference between the number of students and the number of Teaching Assistants (TA).

· if <op> is +, -, * or / and e1 and e2 are type of integer or float, then e1 <op> e2 is of type float if either of e1 and e2 is of type float; integer otherwise.

· if <op> is =, !=, <, <=, or >= and e1 and e2 are of compatible types (here types integer and float are considered as compatible), then e1 <op> e2 is of type boolean.

· if <op> is and or or, and e1 and e2 are of type boolean, then e1 <op> e2 is of type boolean.

Because TOQL is a declarative query language, its semantics allow for a reordering of expressions for the purpose of optimisation. Boolean expressions are evaluated in an order which was not necessarily the one specified by the user, but the one chosen by the query optimiser. This introduces some degree of non-determinism in the semantics of a boolean expression:

(1) the evaluation of a boolean expression stops as soon as the result is known. The evaluation of an and clause stops if the operand which is evaluated first is found to be false. Similarly, the evaluation of an or clause stops if the operand which is evaluated first is found to be true.

(2) some clauses can generate a run time error and depending in their order in evaluation, they will or will not be evaluated. For instance, consider the clause

p.age = 20 or p.spouse.age < 20

If this query is evaluated against an instance of class Person of age 20 but with no spouse, it will return true, if it is evaluated in this order; if however the optimiser has changed the order of evaluation it will return an error.

String expressions

If s1 and s2 are expressions of type string, then s1 || s2 and s1 + s2 are equivalent expressions of type string whose value is the concatenation of the two strings.

If c is an expression of type char, and s an expression of type string, then c in s is an expression of type boolean whose value is true if the character belongs to the string, else false.

If s is an expression of type string, and i is an expression of type integer, then s[i] is an expression of type char whose value is the i+1th character of the string.

If s is an expression of type string, and low and up are expressions of type integer, then s[low:up] is an expression of type string whose value is the sub-string of s from the (low + 1)th character up to, and including, the (up + 1)th character.

If s is an expression of type string, and pattern a string literal, which may include the wildcard characters: “?” or “_”, meaning any character, and “*” or “%”, meaning any sub-string including an empty sub-string, then s like pattern is an expression of type boolean whose value is true if s matches the pattern, else false.

Example:

“a nice string” like “%nice%str_ng”

is true.
4.4.5 Object expressions

Comparison of objects

If e1 and e2 are expressions which denote objects of compatible object types (objects with identity), then e1 = e2 and e1!= e2 are expressions which return a boolean. The second expression is equivalent to not(e1 = e2). Likewise e1 = e2 is true if they designate the same object.

Example:

Globe = element(select c from TheCompanies c

where c.name = “Globe International”)

is true.

Comparison of literals

If e1 and e2 are expressions which denote literals of compatible literal types (objects without identity), then e1 = e2 and e1!= e2 are expressions which return a boolean. The second expression is equivalent to not(e1 = e2). Likewise, e1 = e2 is true if the value e1 is equal to the value e2.

Extracting an attribute or traversing a relationship from an object

If e is an expression of some type (literal or object) having an attribute or a relationship p of type t, then e.p and e->p are expressions of type t. These are alternate syntax to extract property p of an object e.

Applying an operation to an object

If e is an expression of a type having a method f without parameters and returning a result of type t then e->f(), e.f(), e->f and e.f are expressions of type t. These are alternate syntax to apply an operation on an object. The value of the expression is the one returned by the operation. If the operation returns nothing, the result is the object nil.

Example:

Globe->title()

This applies the operation title to object Globe.

Applying an operation with parameters to an object

If e is an expression of an object type having a method f with parameters of type t1, t2, …, tn and returning a result of type t, and e1, e2, …, en are expressions of type t1, t2, …, tn then e->f(e1, e2, …, en) and e.f(e1, e2, …, en) are expressions of type t that apply operation f with parameters e1, e2, …, en to object e. The value of the expression is the one returned by the operation. If the operation returns nothing, the result is the object nil.

Example:

Doe->apply_course(“Math”, Turing)->number

This query calls the operation apply_course of class Student for the object Doe. It passes two parameters, a string and an object of type Course, and the query returns the number of this course, by accessing the respective property.

4.4.6 Collection expressions

Universal quantification

If x is a variable name, e1 and e2 are expressions, e1 denotes a collection and e2 a predicate, then

for all x in e1: e2
is an expression of type boolean. It returns true if all the elements of collection e1 satisfy e2 and false otherwise.

Example:

for all x in Students: x.student_id > 0

This returns true if all the objects in the Students set have a positive value for their student_id attribute. Otherwise it returns false.

Existential quantification

If x is a variable name, and e1 and e2 are expressions, e1 denotes a collection and e2 a predicate, then

exists x in e1: e2
is an expression of type boolean. It returns true if at least one element of collection e1 satisfies e2 and false otherwise.

Example:

exists x in Doe.takes: x.taught_by.name = “Turing”

This returns true if at least one course Doe takes is taught by someone named Turing.

If e is a collection expression, then exists(e) is an expression which returns a boolean value. It returns true if there exists at least one element in the collection. Note that this operator accepts the SQL syntax for nested queries like

select … from col where exists (select … from col1 where predicate)

The nested query returns a bag to which the operator exists is applied. This is of course the task of an optimiser to recognise that it is useless to compute effectively the intermediate bag result.

Membership testing

If e1 and e2 are expressions, e2 is a collection, e1 is an object or a literal having the same type or subtype with the elements of e2, then e1 in e2 is an expression. It returns true if element e1 belongs to collection e2.

Example:

Globe in TheCompanies

This returns true.
Chairman in Globe.employees

This returns true if the object Chairman represents an employee of “Globe International’.

Aggregate operators

If e is an expression which denotes a collection and <op> is an operator from {min, max, count, sum, avg}, then <op>(e) is an expression.

Example:

max(select salary from Professors)

This returns the maximum salary of the Professors.

If e is of type collection(t), where t is integer or float, then <op>(e) where <op> is an aggregate operator other than count, is an expression of type t.

If e is of type collection(t), then count(e) is an expression of type long.

4.4.7 Select-from-where

The general form of a select statement is as follows:

select [distinct] f(x1, x2,…, xn, xn+1, xn+2,…, xn+p)

from e1(xn+1, xn+2,…, xn+p) [as] x1

e2(x1,xn+1, xn+2, …, xn+p) [as] x2

e3(x1, x2, xn+1, xn+2,…, xn+p) [as] x3

…

en(x1, x2,…, xn-1, xn+1, xn+2,…, xn+p) [as] xn
[where p(x1, x2,…, xn, xn+1, xn+2,…, xn+p)]

[order by f1 (x1, x2,…, xn+p), f2(x1, x2,…, xn+p),…, fq(x1, x2,…, xn+p)]

The xn+1, xn+2,…, xn+p are free variables that have to be bound to evaluate the query.

The ei’s have to be of type collection, p has to be of type boolean and the fi’s have to be of a sortable type, i.e., an atomic type.

The type of the result of a select from where is as follows:

· it is always a collection,

· the collection type does not depend of the collections specified in the from clause

· the collection type depends only on the form of the query : if we use order by we get a list, if we use the distinct keyword without order by, we get a set and if neither order by nor distinct are used, we get a bag.

Example:

select struct(student: x.name, professor: z.name)

from Students as x,

x.takes as y,

y.taught_by as z

where z.rank = “full professor”

This returns a bag of structures giving student names and the names of the full professors from which they take classes.

For analogy to SQL, a * can be used instead of the f(x1, x2,…, xn, xn+1,…, xn+p) as an equivalent to x1, x2,…, xn
Example:

select *

from Students as x,

x.takes as y,

y.taught_by as z

where z.rank = “full professor”

This returns a bag of structures, giving for each student object, the section object followed by the student and the full professor object teaching in this section:

bag<struct(x: Student, y: Section, z: Professor) >

Syntactical variations are accepted for declaring the variables in the from part, exactly as with SQL. The as keyword may be omitted. Moreover, the variable itself can be omitted too, and in this case, the name of the collection itself serves as a variable name to range over it.

Example:

select struct(student: Students.name, professor: z.name)

from Students

Students.takes y,

y.taught_by z

where z.rank = “full professor”

In a select-from-where query, the where clause can be omitted, with the meaning of a true predicate.

Group-by operator

If select_query is a select-from-where query, partition_attributes is a structure expression and predicate a boolean expression, then

select_query group by partition_attributes

is an expression and

select_query group by partition_attributes having predicate

is an expression.

The result of the Cartesian product defined by the from clause is evaluated and filtered, as specified in the where clause. For each element of the filtered set, the values of partition_attributes are computed and elements with identical values for all partition_attributes form a group. The result of this operation is a set of structures: each structure has the values for partition_attributes and a property, conventionally called partition, which is a bag that hosts all the elements of the filtered Cartesian product that produce the specific values for the partition_attributes.

If the partition attributes are att1: e1, att2: e2,…, attn: en, then the result of the grouping is of type

set<struct(att1: type_of(e1), att2: type_of(e2) … attn: type_of(en),

partition: bag<type_of(grouped elements)>)>

The type of grouped elements is defined as follows:

If the from clause declares the variables v1 on collection col1, v2 on col2,…, vn on coln, the grouped elements is a structure with one attribute, vk, for each collection having the type of the elements of the corresponding collection partition:

bag<struct(v1: type_of(col1 elements),…, vn: type_of(coln elements))>

If a collection colk has no variable declared the corresponding attribute has an internal system name.

This partitioned set may then be filtered by the predicate of a having clause. Finally, the result is computed by evaluating the select clause for this partitioned and filtered set.

The having clause can thus apply aggregate functions on partition; likewise the select clause can refer to partition to compute the final result. Both clauses can refer also to the partition attributes.

Example:

select *

from Employees e

group by salary < 1000 as low,

salary >= 1000 and salary < 10000 as medium,

salary>=10000 as high

This gives a set of three elements, each of which has a property called partition that contains the bag of employees that enter in this category. So the type resulting from the group by operator is

set<struct(low: boolean, medium: boolean, high: boolean,

partition: bag<struct(e: Employee)>)>

Since the select clause does not include the distinct keyword and the order by clause is not present, the final query result is

bag<struct(low: boolean, medium: boolean, high: boolean,

partition: bag<struct(e: Employee)>)>

The second form enhances the first one with a having clause which enables you to filter the result using aggregate functions which operate on each partition.

Example:

select department, avg_salary: avg(select e.salary from partition)

from Employees e

group by e.deptno as department

having avg(select e.salary from partition) > 30000

This gives a set of couples: department and average of the salaries of the employees working in this department, when this average is more than 30000. So the type of the result is

bag<struct(department: short, avg_salary: float)>

Note that to compute the average salary, we have used a shortcut notation allowed by the scope rules. The fully developed notation would read

avg_salary: avg(select x.e.salary from partition x)

4.4.8 Order-by operator

If select_query is a select-from-where or select-from-where-group_by query, and if e1, e2, …., en are expressions, then select_query order by e1, e2, …, en is an expression. It returns a list of the select elements sorted by the functions e1, and inside each subset yielding the same e1, sorted by e2, …, and the final subset, sorted by en.

Example:

select p from Persons p order by p.age, p.name

This sorts the set of persons on their age, then on their name and puts the sorted objects into the result as a list.

Each sort expression criterion can be followed by the keyword asc or desc, specifying respectively an ascending or descending order. The default order is that of the previous declaration. For the first expression, the default is ascending.

Example:

select * from Persons order by age desc, name asc, department

4.4.9 Indexed collection expressions

Getting the ith Element of an indexed collection

If e1 and e2 are expressions, e1 is a list or an array, e2 is an integer, then e1[e2] is an expression.

This extracts the e2 + 1 element of the indexed collection e1. Notice that the first element has the rank 0.

Examples:

list(a, b, c, d)[1]

this returns b

element(
select x

from Courses as x

where x.name = “Math” and x.number =”101”).requires[2]

This returns the third prerequisite of Math 101.

Extracting a sub-collection of an indexed collection.

If e1, e2, and e3 are expressions, e1 is a list or an array, e2 and e3 are integers, then e1[e2:e3] is an expression.

This extracts the sub-collection of e1 starting at position e2 and ending at position e3.

Example:

list(a, b, c, d)[1:3]

This returns list(b, c, d).

Example:

element(
select x

from Courses as x

where x.name=”Math” and x.number=”101”).requires[0:2]

This returns the list consisting of the first three prerequisites of Math 101.

Getting the first and last element of a collection

If e is an expression, if <op> is an operator from {first, last}, e is a list or an array, then <op>(e) is an expression.

This extracts the first or last element of a collection.

Example:

first(element(
select x

from Courses as x

where x.name=”Math” and x.number=”101”).requires)

This returns the first prerequisite of Math 101.

Concatenating two indexed collections

If e1 and e2 are expressions, if e1 and e2 are both either lists or arrays, then e1 + e2 is an expression.

This computes the concatenation of e1 and e2.

Example:

list(1,2) + list(2,3)

This query generates list(1,2,2,3).

4.4.10 Binary set expressions

Union, intersection, difference

If e1 and e2 are expressions, <op> is an operator from {union, except, intersect} and e1 and e2 are sets or bags, then e1 <op> e2 is an expression. This computes set theoretic operations, union, difference, and intersection on e1 and e2, as defined in the set algebra.

When the collection types of the operands are different (bag and set), the set is previously converted into a bag and the result is a bag.

Examples:

Students except TAs

This returns the set of students who are not Teaching Assistants.

bag(2,2,3,3,3) union bag(2,3,3,3)

This bag expression returns bag(2,2,3,3,3,2,3,3,3)
bag(2,2,3,3,3) intersect bag(2,3,3,3)

The intersection of 2 bags yields a bag that contains the maximum for each of the multiple values. So the result is: bag(2,2,3,3,3)
bag(2,2,3,3,3) except bag(2,3,3,3)

This bag expression returns bag(2).

Inclusion

If e1 and e2 are expressions which denote sets or bags of compatible types and <op> is an operator from {<, <=, >, >=}, then e1 <op> e2 is an expression of type boolean. When the operands are different kinds of collections (bag and set), the set is first converted into a bag.

e1 < e2 is true if e1 is included in e2 but not equal to e2
e1 <= e2 is true if e1 is included in e2
e1 > e2 is true if e2 <= e1 is true

e1 >= e2 is true if e2 < e1 is true

Example:

set(1,2,3) < set(3,4,2,1)
is true.

4.4.11 Conversion expressions

Extracting the element of a singleton

If e is a collection-valued expression, element(e) is an expression.

This takes the singleton e and returns its element. If e is not a singleton, this raises an exception.

Example:

element(select c from Professors as x where x.name= “Turing”)

This returns the professor whose name is Turing (if there is only one).

Turning a list into a set

If e is a list expression, listtoset(e) is an expression. This converts the list into a set, by forming the set containing all the elements of the list.

Example:

listtoset(list(1,2,3,2))

This returns the set containing 1, 2 and 3.

Flattening collection of collections

If e is a collection-valued expression, flatten(e) is an expression .This converts a collection of collections of t into a collection of t. So this flattening operates at the first level only. Assuming the type of e to be col1<col2<t> >, the result of flatten(e) is:

· If col2 is a set (resp. a bag), the union of all col2<t> is done and the result is a set<t> (resp. bag<t>)

· If col2 is a list (resp. an array) and col1 is a list (resp. an array) as well, the concatenation of all col2<t> is done following the order in col1 and the result is col2<t>, which is thus a list (resp. an array). Of course duplicates, if any, are maintained by this operation.

· If col2 is a list or an array and col1 is a set or a bag, the lists or arrays are converted into sets, the union of all these sets is computed and the result is a set<t>, therefore without duplicates.

Examples:

flatten(list(set(1, 2, 3), set(3, 4, 5, 6), set(7)))

This returns the set containing 1, 2, 3, 4, 5, 6, 7.

flatten(list(list(1, 2), list(1, 2, 3)))

This returns list(1, 2, 1, 2, 3).

flatten(set(list(1, 2), list(1, 2, 3)))

This returns the set containing 1, 2, 3.

4.4.12 Typing an expression

If e is an expression of type t, t’ is a type name, and t and t’ are comparable (either t >= t’ or t <= t’) then (t’)e is an expression of type t’. This expression has two impacts:

(1) at compile time, it is a statement for the interpreter/compiler type checker to notify that e should be understood as of type t’
(2) at run time it asserts that e is indeed of type t’ (or a type t1 such that t1 < t’) and will either return the result of e if it is of type t (or less than t) or raise an exception if e is of a type t not less or equal to t’.

This mechanism allows the user to execute queries that would otherwise be rejected as incorrectly typed. For instance

select s.salary

from Student s

where s in (select sec.assistant from Section sec)

Because s is restricted in the whole clause to Teaching Assistants that teach a section, this query will indeed return the salaries of these people. However the type checker has no means to check that the instantiations of Student s have indeed always a salary field and the query will be rejected at compile time.

If the query is written as

select ((Employee) s).salary

from Student s

where s in (select sec.assistant from Sections sec)

Then the type checker knows that s has to be of Employee type and the query is accepted as type correct. Note that at run time, each occurrence of s in the select clause will be checked for its type.

4.4.13 Function call

If f is a function of type (t1, t2,…, tn->t) (i.e. it accepts n arguments with the ith argument being of type ti and returns a result of type t) and e1, e2,…, en are expressions of type t1, t2,…, tn then f() and f(e1, e2,…, en) are expressions of type t whose value is the value returned by the function, or the object nil, when the function does not return any value (i.e t is void). The first form calls a function without a parameter, while the second one calls a function with the parameters e1, e2,…, en.

TOQL does not define in which language the body of such a function is written. This allows one to extend the functionality of TOQL without changing the language.

4.4.14 Scope rules

The from part of a select-from-where query introduces explicit or implicit variables to range over the filtered collections. An example of an explicit variable is

select … from Persons p …

while an implicit declaration would be

select … from Persons …

The scope of these variables spreads over all the parts of the select-from-where expression including nested sub-expressions.

The group by part of a select-from-where-group_by query introduces the name partition along with possible explicit attribute names that characterise the partition. These names are visible in the corresponding having and select parts including nested sub-expressions within the parts.

Inside a scope, these variable names are used to construct path expressions and reach properties (attributes and operations) when these variables denote complex objects. For instance, in the scope of the first from clause above, the age of a person is accessed by the notation p.age.

When the variable is implicit, like in the second from clause, the name of the collection can be directly used; e.g. Persons.age.

However, when no ambiguity exists, the property name can be used directly as a shortcut, without using the variable name to open the scope (this is made implicitly), writing simply: age. There is no ambiguity when a property name is defined for one and only one object denoted by a visible variable.

To summarise, a name appearing in a (nested) query is looked up as follows:

· a variable in the current scope, or

· a named object, i.e., an entry point in the database, or

· an attribute name or an operation name of a variable in the current scope, when there is no ambiguity, i.e., this property name belongs to only one variable in the scope.

Example:

Assuming that in the current schema the names Persons and Cities are defined.

select scope1
from Persons, Cities c

where exists(select scope2 from children as child)

or count(select scope3, (select scope4 from partition)

from children p,

scope5 v

group by age: scope6)

In scope1, we see the names: Persons, c, Cities, all property names of class Person and class City as long as they are not present in both classes, and they are not called Persons, c, nor Cities.

In scope2, we see the names: child, Persons, c, Cities, the property names of the class City which are not properties of the class Person. No attribute of the class Person can be accessed directly since they are ambiguous between child and Persons.

In scope3, we see the names: age, partition, and the same names from scope1, except age and partition, if they exist.

In scope4, we see the names: age, partition, p, v, and the same names from scope1, except age, partition, p, v, if they exist.

In scope5, we see the names: p, and the same names from scope1, except p, if it exists.

In scope6, we use the names: p, v, Persons, c, Cities, the property names of the class City that are not property names of the class Person. No attribute of the class Person can be accessed directly since they are ambiguous between child and Persons.

4.4.15 Syntactical abbreviations

TOQL defines an orthogonal expression language, in the sense that all operators can be composed with each other as long as the types of the operands are correct. To achieve this property, TOQL is defined as a functional language. Simple operators such as “+” or composite operators such as “select from where”, “group_by”, and “order_by” which always deliver a result in the same type system are introduced. These operators can be recursively be an operand to other operations in the same query.

In order to accept the whole DML query part of SQL, as a valid syntax for TOQL, ad-hoc constructions have been added. Yet, these constructions cannot be considered in the category of true operators. This section gives the list of these constructions that we call “abbreviations”, since they are completely equivalent to a functional TOQL expression. At the same time, we give the semantics of these constructions, since all operators used for this description have been previously defined.

Structure construction

The structure constructor has been already introduced. An alternate syntax is allowed in two contexts: select clause and group-by clause. In both contexts, the SQL syntax is accepted, along with the one already defined.

select projection {, projection}…

select … group by projection {, projection}

where projection is one of the forms:

1. expression as identifier

2. identifier: expression

3. expression
This is an alternate syntax for

struct(identifier: expression {, identifier: expression})

If there is only one projection and the syntax (3) is used in a select clause, then it is not interpreted as a structure construction but rather the expression stands as is. Furthermore, a (3) expression is only valid if it is possible to infer the name of the corresponding attribute (the identifier). This requires that the expression denotes a path expression (possibly of length one) ending by a property whose name is then chosen as the identifier.

Example:

select p.name, salary, student_id

from Professors p, p.teaches

This query returns a bag of structures:

bag<struct(name: string, salary: float, student_id: integer)>

Composite predicates

If e1 and e2 are expressions, e2 is a collection, e1 has the type of its elements, and relation is a relational operator (=, !=, <, <=, >, >=), then e1 relation some e2, e1 relation any e1 and e2 relation all e2 are expressions whose value is a boolean.

The two first predicates are equivalent to

exists x in e2: e1 relation x

The last predicate is equivalent to

for all x in e2:e1 relation x

Example:

10 < some(8, 15, 7, 22)

is true

ΤOQL Temporal Extension

In this chapter we are going to present the TOQL temporal extensions. The following TODL Definitions are used to demonstrate the temporal features of TOQL.

interface
Product

(extent
Products

 key
ProductName)

{

// Instance properties

attribute String ProductName;

attribute String Description;

attribute float AvgSales valid state overlaps

granularity month;

attribute List<String> Ingredients transaction;

attribute Interval LifeTime valid state granularity day;

relationship Set<Factory> manufactured valid state

granularity month transaction

inverse Factory::manufactures;

};

interface
Factory

(extent
Factories

 key
Owner, Location)

{

// Instance properties

attribute String Owner;

attribute String Location;

attribute String Manager valid state granularity month;

attribute Long Turnover valid state granularity month;

relationship Set<Product> manufactures valid state

granularity month transaction
inverse Product::manufactured;

};

In the following, we will assume that the database has the following contents; so query results in the examples are based on these data.

[image: image1.wmf]Obj001

ProductName: ‘Life Orange Juice’

Description: ‘Orange juice. Sold in 330ml, 1

lt and 2

lt packages’

AvgSales: {(value: 1000, VT: [1995-01, 1996-01)), (value: 1300, VT: [1995-06, 1996-06)),

(value: 1400, VT: [1996-01, 1997-01)), (value: 1600, VT: [1996-06, 1997-06))}

Ingredients: {(value: {‘Concentrated Orange Juice’, ‘Water’, ‘Sugar’, ‘E210’}, TT: [1995-01-01, 1995-06-01)),

(value: {‘Concentrated Orange Juice’, ‘Water’, ‘Sugar’}, TT: [1995-06-01, 1996-01-01)),

(value: {‘Concentrated Orange Juice’, ‘Water’, ‘E210’}, TT: [1995-06-01,

UC

))}

LifeTime: {(value: 18, VT: [1995-01-01, 1995-06-01)), (value: 9, [1995-06-01, 1996-06-01)),

(value: 12, [1996-06-01,

forever

))}

Manufactured: {(value: {

Ref<Obj005>}, VT: [1995-01-01, 1996-06-01), TT: [1994-12-01,

UC

)),

(value: {

Ref<Obj005>}, VT: [1996-06-01, 1997-01-01),

TT: [1994-12-01, 1995-11-16)),

(value: {

Ref<Obj005>,

Ref<Obj006>}, VT: [1996-06-01, 1997-01-01), TT: [1995-11-16,

UC

)),

(value: {

Ref<Obj006>}, VT: [1996-07-01, 1997-06-01), TT: [1996-04-10,

UC

))}

[image: image2.wmf]Obj002

ProductName: ‘Champion’

Description: ‘Chocolate milk with honey and malt. Sold in packages of 330 ml.’

AvgSales: {(value: 600, VT: [1994-01, 1994-06)), (value: 500, VT: [1994-06, 1996 -09)),

(

value: 450, VT: [1994-06, 1995-01)) }

Ingredients: {(value: {‘

Cow’’s Milk’, ‘Honey’, ‘Chocolate’, ‘Malt’, ‘

Color’}, TT: [1994-01, 1994-05)),

 (

value: {‘

Cow’’s Milk’, ‘Honey’, ‘Chocolate’,

‘Malt’}, TT: [1994-05, 1995-02))}

LifeTime: {(value: 6, VT: [1994-01-01, 1994-06-01)), (value: 9, [1994-06-01, 1995-01-01)),

(

value: 12, [1995-06-01,

forever

))}

Manufactured: {(value: {

Ref<Obj005>}, VT: [1994-01-01, 1996-01-01), TT: [1993-11-07, 1994-10-10)),

 (

value: {

Ref<Obj005>}, VT: [1994-06-01, 1995-01-01), TT: [1994-10-10,

UC

))}

[image: image3.wmf]Obj005

Owner: ‘Delta Dairy S.A.’

Location: ‘St.

Stefanos’

Manager: {(value: ‘

Stefanou’, VT: [1994-01, 1995-01)), (value: ‘

Nikou’, VT: [1995-01, 1996-09)}

Turnover: {(value: 8000, VT: [1995-01, 1996-01)), (value: 9000, [1996-01, 1996-06))}

Manufactures: {(value: {

Ref<Obj002>}, VT: [1994-01-01, 1996-01-01), TT: [1993-11-07, 1994-10-10)),

(value: {

Ref<Obj002>}, VT: [1994-06-01, 1995-01-01), TT: [1994-10-10,

UC

)),

(value: {

Ref<Obj001>}, VT: [1995-01-01, 1997-01-01), TT: [1994-12-01,

UC

))}

[image: image4.wmf]Obj006

Owner: ‘3E Canning Co.’

Location: ‘

Korinthos’

Manager: {(value: ‘

Andreou’, VT: [1993-06, 1995-04)), (value: ‘

Ioannou’, VT: [1995-04, 1997-01))}

Turnover: {(value: 5000, VT: [1994-01, 1994-09)), (value: 6000, VT: [1995-01, 1995-07))}

Manufactures: {(value: {

Ref<Obj001>}, VT: [1996-06-01, 1997-01-01), TT: [1995-11-16, 1996-04-10)),

(

value: {

Ref<Obj001>}, VT: [1996-06-01, 1997-06-01), TT: [1996-04-10,

UC

))}

4.5 Data types for Time Representation

TOQL provide facilities to manipulate the data types that are used for the representation of time, namely interval, instant, period and period_set. A TOQL query may contain literals of these types as well as functions, predicates and operators, which can be applied on these data types. In the following paragraphs these features of TOQL are described.

4.5.1 Literals

Instants

If you want to define a literal of type instant you have to use the reserved word instant, followed by a string literal containing the actual value. The string literal may, in turn, be followed by an (optional) granularity specification. Finally, the granularity specification may be followed by an (optional) calendar specification. The full syntax is:

instant value [granularity granularity_specification]

[calendar calendar_specification]

The format of the string literal following the keyword instant is calendar dependent. In the Gregorian calendar, the string literal of an instant specification is

YYYY‑MM‑DD HH:MM:SS

where the first part (i.e. the portion before the space) represents the date and the second part represents the time. Only the year part is mandatory, whereas all other fields are optional. However, if some field is present, all other fields between the year and the specified field must be entered (e.g. if the day part is specified, then the month field is mandatory).

If the value in the string literal contains more information than is needed in the specified granularity (e.g. in the Gregorian calendar the string literal contains a month specification, whereas a granularity of year is specified for the value) the extra information is ignored; if less information is supplied, the missing parts are filled using default values. In the Gregorian calendar, the default value for months and days is 1; for hours, minutes and seconds the default value is 0.

The string literal may contain one of the words beginning, forever and now, designating the minimum, maximum and the current timestamp, respectively. In particular, the word now may be followed by an opening and a closing parenthesis (now()), in which case the computation of the value of the system clock is deferred until the actual value of the instant is needed.

If the calendar specification is missing, the default one is used, which is the Gregorian. The granularity specification, if present, should designate a granularity that is valid for the calendar in which the instant is expressed; if the granularity specification is missing, the default granularity for the calendar is used (in the Gregorian calendar, the default granularity is Second). When one of the beginning, forever or now is used, then only the calendar specification may be present, while the granularity specification is not allowed, meaning that only the default granularity of the calendar may be used.

Examples:

Literal
Value

Instant “1990” granularity Year calendar Gregorian
An instant for the year 1990 of the Gregorian calendar.

instant “1990-01-01”

granularity Month
The instant January 1990, in the Gregorian (default) calendar with a granularity of month. The day specification is ignored, since it is redundant for instants with a granularity of month.

instant “1990-01”

granularity Day
The instant January 1990, in the Gregorian (default) calendar with a granularity of day. The missing part (day specification) is filled with a default value (1), thus the result is the instant January 1st, 1990.

instant “now”
The current date and time, in the Gregorian (default) calendar.

instant “Spring 1996”

granularity Semester

calendar Academic
An instant corresponding to the Spring semester of the academic year 1996. It is expressed in the “Academic” calendar, having a granularity of “Semester”.

instant “beginning”

calendar Academic
Specifies the minimum timestamp in the academic calendar.

Intervals

A literal of type interval may be specified by using the reserved word interval, followed by a string literal containing the actual value. The string literal may, in turn, be followed by a granularity designation, which may be followed by a calendar specification. The full syntax is:

interval value [granularity granularity_specification]

[calendar calendar_specification]

If the calendar specification is missing, the Gregorian calendar is used as default. The granularity specification, if present, should designate a granularity which is valid for the calendar in which the interval is expressed (Year, Month, Day, Hour, Minute or Second, in the Gregorian calendar); if the granularity specification is missing, the default granularity for the specified (or default) calendar is used.

Examples:

Literal
Value

interval “10”

granularity Day

calendar Gregorian
An interval of 10 Gregorian calendar days.

interval “5”

granularity Year
An interval of 5 years in the Gregorian (default) calendar.

interval “2"

granularity Semester

calendar Academic
An interval of two semesters in the academic calendar.

Periods

Literals of type period may be specified by using the reserved word period followed by a string literal containing the actual value. The string literal is, in turn, followed by an (optional) granularity specification (in the Gregorian calendar, acceptable granularities are Year, Month, Day, Hour, Minute and Second). The granularity specification may be followed by a calendar designation. The full syntax is:

period value [granularity granularity_specification]

[calendar calendar_specification]
The string literal must have a value which starts with a left square bracket (‘[’), ends with a right parenthesis (‘)’) and contains two comma-separated strings si and sj representing the values of two instants, which must be expressed in the period’s calendar. A value of type period is considered to include all instants from si up to, but not including, sj.

The period literal specification is considered valid only if sj designates a time instant that follows si. Note that this check is performed after converting each instant to the designated granularity, so the period literal

period “[1990-01, 1990-04)” granularity year

is invalid, since, after converting each endpoint instant to a granularity of year, the second instant is equal to the first one. If any of the endpoints is equal to now(), then the following additional conditions must be met:

· if the value of the first instant is now(), the value of the second instant must be forever.

· if the value of the second instant is now(), the current value of the system clock should be greater than the first instant.

If the calendar specification is omitted, the Gregorian calendar is used as default. The granularity specification – if present – should designate a granularity, which is valid for the calendar in which the period is expressed (Year, Month, Day, Hour, Minute or Second, in the Gregorian calendar). If the granularity specification is missing, the default granularity for the specified (or default) calendar is used.

Examples:

Literal
Value

period “[1990, 1991)”

granularity Year

calendar Gregorian
A period including the year 1990 of the Gregorian calendar.

period “[1990-01, 1992-07)”

granularity Month
A 30-month period, starting from January 1990 and ending at July 1992 (the last month is not included in the period). The period is expressed in the Gregorian calendar (the default).

period “[1990, 1991-04)”

granularity Month

calendar Gregorian
An 15-month period, starting from January 1990 and ending at April 1991 in the Gregorian calendar. The information missing from the first instant (the month specification) is filled with a default value (1).

period “[now, 2000-01-01)”

granularity Day
A period starting from the current date and ending at the last day of year 1999. The period is expressed in the Gregorian (default) calendar.

period “[Winter 1996,

Spring 1997)”

granularity Semester

calendar Academic
A period starting at the Winter semester of the academic year 1996 and ending at the Spring semester of the academic year 1997.

Period sets

Period set literals may be specified by using a constructor, named period_set, which is followed by a granularity specification and a calendar designation. The constructor accepts a list of values of type period, which are the elements of the period sets. For each argument, only its string literal part needs to be specified, i.e. the period keyword and the granularity designation may be omitted. However, the TOQL processor accepts full period specifications for any of the arguments to the constructor. The full syntax is:

period_set (period1, period2, …)

[granularity granularity_specification]

[calendar calendar_specification]

If the calendar specification is omitted, the default calendar is used, which is the Gregorian one. The granularity specification – if present – should designate a granularity which is valid for the calendar in which the period is expressed (Year, Month, Day, Hour, Minute and Second in the Gregorian calendar). If the granularity specification is missing, the default granularity for the specified (or default) calendar is used. All periods that are included in the constructor should be expressed in the calendar of the period set.

All arguments to the constructor are converted to the designated granularity. Overlapping or adjacent arguments to the constructor are merged into a single period value, within the period set.

Examples:

Literal
Value

period_set(“[1990, 1991)”,

“[1992, 1994)”)

granularity Year
A period set containing two periods. The default calendar (Gregorian) is used for the period set.

period_set(period “[1990, 1991)”

granularity Year)

granularity Day

calendar Gregorian

A period set of granularity day, containing the period '[1990-01-01, 1991-01-01)' (the result of casting the period '[1990, 1991)' to a granularity of day. The period set is expressed in the Gregorian calendar.

period_set(“[1990, 1991)”,

“[1991, 1992)”)

granularity Year
A period set with one element, corresponding to the years 1990 and 1991. Two arguments are listed in the constructor, but since they are adjacent, they are replaced by a single period ('[1990, 1992)') in the result value.

period_set(“[Winter 1996,

Spring 1997)”)

granularity Semester

calendar Academic
A period set with a single period element, expressed in the Academic calendar.

4.5.2 Functions

TOQL introduces new functions that can be applied on data of types instant, interval, period and period set. These functions allow for the construction of values of type instant, interval, period and period set, event and period extraction and computation of the duration of periods and period sets.

The signatures of the new functions, along with a brief description of their functionality are presented in the following paragraphs.

· instant instant(in string s1)

[granularity granularity_spec] [calendar calendar_spec]

instant is a constructor function. It accepts an argument of type string and returns a result of type instant. The instant returned is created based on the input string, which should have the valid format for an instant at the specified calendar. The function may be followed by an optional granularity specification and/or an optional calendar specification in which the resulting instant will be expressed. The granularity specification – if present – should designate a granularity which is valid for the calendar in which the instant will be expressed.

· interval interval(in long number)

[granularity gran_spec] [calendar cal_spec]

interval is a constructor function. It accepts an argument of type long and returns a result of type interval. As with the instant constructor, the interval may be followed by an optional granularity and/or calendar specification, that will define the granularity and calendar in which the resulting interval will be expressed. The long passed as argument designates the number of granules – at the specified granularity – that the resulting interval contains. The granularity specification – if present – should designate a granularity which is valid for the calendar in which the period is expressed.

· period period(in instant I1, in instant I2)

[granularity gran_spec] [calendar cal_spec]

period is a constructor function. It accepts two arguments of type instant and returns a result of type period, starting at i1 and ending at i2. (Note that, since the periods are open right, instant i2 is not included in the period.) The function may be followed by a granularity specification, which determines the result’s granularity. If this specification is not present and both arguments have the same granularity then the result is expressed in this common granularity. If however, the two arguments don’t have a common granularity the result is expressed in the default granularity. The two arguments must be expressed in the same calendar, which is the calendar in which the resulting period is expressed. If i2 does not occur later on the time axis than i1, the NIL value is returned.

Examples:

period(instant “1994-01” granularity Month,

instant “1995-01” granularity Month)

= period “[1994‑01, 1995‑01)” granularity Month calendar Gregorian

period(min(set(I1, I2)), max(set(I1, I2)))

returns a period which is delimited by the instants I1 and I2. The earliest instant is used as the period’s start, whereas the latest one is used as the period’s end. The result is expressed in the default granularity.

period(instant “1994-01” granularity Month,

instant “1995-01” granularity Month) granularity Year =

period “[1994, 1995)” granularity Year calendar Gregorian

· period period(in string query) [granularity gran] [calendar cal]

Using this period constructor, taking as argument only one string – a query returning the string specification of the period actually - we can obtain a period which results from a query. This function can be followed by an optional granularity specification, as stated for the instant(string) constructor function.

· period intersection(in period P1, in period P2)

When applied on two arguments of type period, the intersection function yields a result of the same type. The result contains all time points that are common to the two arguments and its granularity is the same as the function’s arguments’ granularity
. If the two arguments do not have common points, the intersection function returns the NIL value.

Examples:

intersection(period “[1994‑01, 1995‑01)” granularity Month,

period “[1994‑06, 1995‑06)” granularity Month) =

period “[1994‑06, 1995‑01)” granularity Month

calendar Gregorian

intersection(period “[1994‑01, 1995‑01)” granularity Month,

period “[1995‑06, 1996‑01)” granularity Month) = NIL
· period_set intersection(in period_set PS1, in period_set PS2)

When applied on two arguments of type period_set, the intersection function yields a result of the same type. The result contains all time points that are common to its two arguments, represented as non adjacent and non overlapping periods. If the two arguments do not have common points, the intersection function returns the empty period set. The granularity of the result is the same as the function’s arguments’ granularity.

Examples:

intersection(period_set(“[1994‑01, 1995‑01)”,

“[1996-01, 1997-01)”) granularity Month,

period_set(“[1994‑06, 1995‑06)”) granularity Month) =

period_set {“[1994‑06, 1995‑01)”} granularity Month

calendar Gregorian

intersection(period_set(“[1994‑01, 1995‑01)”) granularity Month,

period_set(“[1995‑06, 1996‑01)”) granularity Month) =

period_set {} granularity Month calendar Gregorian

which is the empty period set.

· period merge(in period P1, in period P2)

When the merge function is applied on two arguments of type period it yields a result of the same type. The result contains all time points that are included in either argument, and its granularity is the same as the arguments’ granularity. If the two arguments are neither overlapping, nor adjacent and thus the result cannot be represented using a single value of type period, the merge function returns the NIL value.

Examples:

merge(period “[1994‑01, 1995‑01)” granularity Month,

period “[1994‑06, 1995‑06)” granularity Month) =

period “[1994‑01, 1995‑06)” granularity Month calendar Gregorian

merge(period “[1994‑01, 1995‑01)” granularity Month,

period “[1995‑06, 1996‑01)” granularity Month) = NIL
· period_set merge(in period_set P1, in period_set P2)

When the merge function is applied on two arguments of type period_set it yields a result of the same type. The result contains all time points that are included in either argument, expressed as non-overlapping and non-adjacent periods. The granularity of the result is the same as the granularity of the arguments.

Examples:

merge(period_set(“[1994‑01, 1995‑01)”) granularity Month,

period_set(“[1994‑06, 1995‑06)”) granularity Month) =

period_set {“[1994‑01, 1995‑06)”} granularity Month

calendar Gregorian

merge(period_set(“[1994‑01, 1995‑01)”) granularity Month,

period_set(“[1995‑06, 1996‑01)”) granularity Month) =

period_set {“[1994‑01, 1995‑01)”, “[1995‑06, 1996‑01)”}

granularity Month calendar Gregorian

· short year(in instant I)

Function year accepts an argument of type instant and returns a short corresponding to the year part of the argument. The argument must be an instant of the Gregorian calendar.

Example:

year(instant “1994-01” granularity Month) = 1994

· short month(in instant I)

Function month accepts an argument of type instant and returns a short corresponding to the month part of the argument. If the argument does not contain a month part (because its granularity is coarser than Month), the corresponding default value (1) is returned. The argument must be an instant of the Gregorian calendar.

Examples:

month(instant “1994-05” granularity Month) = 5

month(instant “1994” granularity Year) = 1

· short day(in instant I)

Function day accepts an argument of type instant and returns a short corresponding to the day part of the argument. If the argument does not contain a day part, the corresponding default value (1) is returned. The argument must be an instant of the Gregorian calendar.

Example:

day(instant “1994-01-08 04:59:01” granularity Second) = 8

· short hour(in instant I)

Function hour accepts an argument of type instant and returns a short corresponding to the hour part of the argument. If the argument does not contain an hour part, the corresponding default value (0) is returned. The argument must be an instant of the Gregorian calendar.

Example:

hour(instant “1994-01-08 04:59:01” granularity Second) = 4

· short minute(in instant I)

Function minute accepts an argument of type instant and returns a short corresponding to the minute part of the argument. If the argument does not contain a minute part, the corresponding default value (0) is returned. The argument must be an instant of the Gregorian calendar.

Example:

minute(instant “1994-01-08 04:59:01” granularity Second) = 59

· short second(in instant I)

Function second accepts an argument of type instant and returns a short corresponding to the seconds’ part of the argument. If the argument does not contain a second part, the corresponding default value (0) is returned. The argument must be an instant of the Gregorian calendar.

Example:

second(instant “1994-01-08 04:59:01” granularity Second) = 1

· instant begin(in period P)

When applied on an argument of type period the begin function returns an instant, which corresponds to the earliest time point contained in its argument. The granularity of the result is the same as the argument’s granularity.

Example:

begin(period “[1994-01, 1995-01)” granularity Month) =

instant “1994-01”

· instant begin(in period_set PS)

When applied on an argument of type period_set the begin function returns an instant, which corresponds to the earliest time point contained in its argument. The granularity of the result is the same as the argument’s granularity.

Example:

begin(period “[1994-01, 1995-01)” granularity Month) =

instant “1994-01”

· instant end(in period P)

When applied on an argument of type period, the end function returns an instant of the same granularity as the function argument. The value of the argument is equal to the ending boundary of the period.

Example:

end(period “[1994‑01, 1995‑01)” granularity Month) =

instant “1995-01”.

(note that since the period type is closed left-open right, the time point 1995-01 is not considered to belong to the period).

· instant end(in period_set PS)

When applied on an argument of type period_set, the end function returns an instant of the same granularity as the function argument. The value of the result is equal to the ending boundary of the last period included in the argument.

Example:

end(period_set(“[1994‑01, 1995‑01)”, “[1995-06, 1997-01)”)

granularity Month) = instant “1997‑01”

(note that since the period type is closed left-open right, the time point 1997‑01 is not considered to belong to the period_set).

· interval duration(in period P)

When the argument of function duration is of type period, the function returns an interval representing the argument’s duration, computed at the granularity of the argument (years, months, etc.).

Example:

duration(period “[1994‑01, 1995‑01)” granularity Month) =

interval “12” granularity Month.

· interval duration(in period_set PS)

When the argument of function duration is of type period_set, the function returns an interval representing the sum of the durations of all the periods that its argument contains. The number of instants is computed at the argument’s granularity.

Example:

duration(period_set(“[1994, 1995)”, “[1996, 1997)”)

granularity Year) = interval “2” granularity Year

· period first(in period_set PS)

Function first accepts an argument of type period_set and returns a result of type period, which has the same granularity as the function argument. The value of the result is equal to the earliest period included in the argument. If the argument is the empty period set, the value NIL is returned.

Example:

first(period_set(“[1994, 1995)”, “[1996, 1997)”) granularity Year)

= period “[1994, 1995)” granularity Year

· period last(in period_set PS)

Function last accepts an argument of type period_set and returns a result of type period, which has the same granularity as the function argument. The value of the result is equal to the latest period included in the argument. If the argument is the empty period set, the value NIL is returned.

Example:

last(period_set(“[1994, 1995)”, “[1996, 1997)”) granularity Year)

= period “[1996, 1997)”

· cast

In addition to the functions presented above, TOQL introduces a syntactic construct to facilitate explicit conversion of types used for time representation to a different granularity. In order to convert a literal of type instant, interval, period, period_set to a different granularity, the cast construct is used as follows:

cast datum to granularity_specification
(where granularity_specification is a designation of the desired granularity, which must also be valid for the calendar of the datum).

Example:

cast instant “1994-01” granularity Month to granularity Year =

instant “1994” granularity Year

· string granularity(in time_literal)

TOQL also introduces a new function, named granularity to facilitate the user determine the granularity of a time element. This function can be applied to literals of type instant, interval, period, period_set. The result of this function is a string denoting the granularity of the time literal

Example:

granularity(period “[1994-01, 1994-06)” granularity Year) = “Year”

· string calendar(in time_literal)

Finally, TOQL introduces a new function, named calendar to facilitate the user determine the calendar of a time element. This function can be applied to literals of type instant, interval, period, period_set. The result of this function is a string denoting the calendar of the time literal

Example:

calendar(period “[1994-01, 1994-06)”) = “Gregorian”

4.5.3 Predicates

TOQL supports all comparison operators defined in the non-temporal characteristics of TOQL, and introduces new predicates that facilitate testing of the relative position of instant, period and period set values. The new predicates are described in the following paragraphs (i1 and i2 denote instant values; p1 and p2 denote period values; ps1 and ps2 denote period set values):

· p1 overlaps p2

ps1 overlaps ps2

The overlaps predicate may be applied on two operands of type period or period_set. It evaluates to true, when there exist at least one instant which is included in both operands, otherwise it evaluates to false.

Examples:

period “[1994‑01, 1995‑01)” granularity Month overlaps

period “[1994‑06, 1995‑06)” granularity Month = true
period “[1994‑01, 1995‑01)” granularity Month overlaps

period “[1995‑06, 1996‑01)” granularity Month = false
· i1 precedes i2

p1 precedes p2

ps1 precedes ps2

The precedes predicate may be applied on two operands of type instant, period or period_set. It evaluates to true, when all instants included in the left operand are located before all instants included in the right operand, on the time axis.

Examples:

instant “1990-01” granularity month precedes

instant “1991-01” granularity Month = true
period “[1994‑01, 1995‑01)” granularity Month precedes

period “[1995‑06, 1996‑01)” granularity month = true
period “[1994‑01, 1995‑01)” granularity Month precedes

period “[1994‑06, 1995‑06)” granularity month = false
· p1 contains p2

ps1 contains ps2

The contains predicate may be applied on two operands of type period or period_set. It evaluates to true, when every instant included in the right operand is also included in the left operand, otherwise it evaluates to false.

Examples:

period “[1994‑01, 1996‑01)” granularity Month contains

period “[1995‑01, 1995‑06)” granularity Month = true

period “[1994‑01, 1995‑01)” granularity Month contains

period “[1994‑06, 1995‑06)” granularity Month = false

· p1 meets p2

The meets predicate may be applied on two operands of type period. It evaluates to true, when the end of the left operand is equal to the start of the right operand, otherwise it evaluates to false.

Examples:

period “[1994‑01, 1995‑01)” granularity month meets

period “[1995‑01, 1995‑06)” granularity month = true

period “[1994‑01, 1995‑01)” granularity month meets

period “[1994‑06, 1995‑06)” granularity month = false
4.5.4 Operators

Standard arithmetic and set theoretic operators may be used in order to perform calculations on data types used for time representation. In the following tables, the allowed operations on the different types of data used for time representation are described. In the case where the operands have different granularities, the result is calculated in the granularity of the left operand.

Table AUTONUM : Operations on intervals

Left operand
Operator
Right operand
Result
Description

-
interval
interval
Negation of the interval’s duration.

+
interval
interval
Unary plus, returns the value of the operand.

interval
+
interval
interval
Adds the duration of the operands.

interval
-
interval
interval
Computes the difference of the operands’ duration.

interval
*
number
interval
Multiplies the interval’s duration by the designated number.

number
*
interval
interval
Equivalent to interval * number.

interval
/
number
interval
Divides the interval’s duration by the designated number.

interval
/
interval
number
Computes how many times the left operand’s duration is greater than the right operand’s duration.

Example:

- (interval “10” granularity Day) = interval “-10” granularity Day

(interval “10” granularity Month) + (interval “1” granularity Year) =

interval “22” granularity Month

Table AUTONUM : Operations on instants

Left operand
Operator
Right operand
Result
Description

instant
+
Interval
instant
Computes an instant which is moved on the time axis by the duration specified by the designated interval.

interval
+
Instant
instant
Equivalent to instant + interval.

instant
-
Interval
instant
Equivalent to instant + (- interval).

instant
-
Instant
interval
Computes an interval whose duration is equal to the number of instants between the left and the right operand.

Examples:

instant “1994-10” granularity Month + interval “1” granularity Month

= instant “1994-11” granularity Month

instant “1994-10” granularity Month - instant “1994-4”

granularity Month = interval “7” granularity Month

Table AUTONUM : Operations on periods

Left operand
Operator
Right operand
Result
Description

period
+
interval
period
Adds the value of the interval to the instants marking the starting and ending points of the period.

period
-
interval
period
Equivalent to period + (- interval).

interval
+
period
period
Equivalent to period + interval.

period
>>
interval
period
Computes a period with the same starting instant as the left operand, but the ending instant is moved towards the end of the time axis by the duration specified by the designated interval. This operator extends the period by the specified interval.

period
<<
interval
period
Computes a period with the same starting instant as the left operand, but the ending instant is moved towards the beginning of the time axis by the duration specified by the designated interval. This operator shrinks the period by the specified interval.

period
union or +
period
period
Equivalent to merge(p1, p2).

period
except or -
period
period
Computes a period which includes all time points contained in the left operand but not in the right operand. If the remaining time points are not consecutive, and thus cannot be represented with a single period value, NIL is returned.

period
intersect or *
period
period
Equivalent to intersection(p1, p2).

Examples:

period “[1994‑01, 1995‑01)” granularity Month >>

interval “1” granularity Month =

period “[1994‑01, 1995‑02)” granularity month

period “[1994‑01, 1995‑01)” granularity Month union

period “[1994‑06, 1995‑06)” granularity Month =

period “[1994‑01, 1995‑06)” granularity Month

Table AUTONUM : Operations on period sets

Left operand
Operator
Right operand
Result
Description

period_set
union or +
period_set
period_set
Equivalent to merge(ps1, ps2).

period_set
except or -
period_set
period_set
Computes a period set which includes all time points contained in the left operand but not in the right operand

period_set
intersect or *
period_set
period_set
Equivalent to intersection(ps1, ps2).

period_set
+
interval
period_set
The + operator is applied to each period in the period set.

period_set
-
interval
period_set
The - operator is applied to each period in the period set.

Examples:

period_set(“[1994‑01, 1995‑01)”) granularity Month union

period_set(“[1994‑06, 1995‑06)”) granularity Month) =

period_set {“[1994‑01, 1995‑06)”} granularity Month

period_set(“[1994‑01, 1995‑01)”, “[1995-06, 1995-10)”)

granularity Month - interval “2” granularity Month =

period_set {“[1994‑01, 1994‑11)”, “[1995-06, 1995-8)”}

granularity Month

4.6 Simple Queries on Temporal Data

As mentioned in previous sections, the simplest query returns all the objects in an extent (e.g. the Products extent):

Products

The type of the result of this query is Bag<Product>. The result contains all product instances, as recorded in the database. Note that no filtering of information is performed in such a query, thus the valid time and transaction time attributes of each selected object contain the whole history. The “masking” of logically deleted information (i.e. values of transaction time instance properties that pertain to past states of the database) and variants with past or future valid times is encapsulated in the behaviour of the respective objects (i.e. valid, transaction time or bitemporal data). This means that the default “get value” method of a valid time (or bitemporal) object should return only the values whose valid timestamp overlaps the current time point.

The individual products may also be retrieved by referencing the distinct members of the Products extent:

select p from Products as p

The behaviour of the query is identical to the previous one, i.e. it returns a bag of product instances, as recorded in the database.

The current value of individual temporal instance properties may be retrieved by listing them in the select list. For example, the query “For each product, fetch its name, the current lifetime and the list of ingredients” can be stated as

select p->ProductName as ProductName,

p->LifeTime as LifeTime,

p->Ingredients as Ingredients

from Products as p

Although in the database schema attributes LifeTime and Ingredients are declared to have valid time semantics and transaction time semantics, respectively, this query returns only the current value for these attributes. This provides compatibility for applications that have been developed on top of a snapshot database schema, which at some later point has been modified to incorporate temporal semantics. If a valid time or bitemporal attribute which allows variants with overlapping timestamps is listed in the select list, then a type error is raised, since no automatic conversion is possible. Indeed, objects with overlapping valid time timestamps have no direct snapshot equivalent, so they are expected to be treated only by temporal applications. So the query

select p->AvgSales as AvgSales

from Products as p

where p->ProductName = “Life Orange Juice”

will be rejected because of a type error.

4.6.1 Temporal modifiers

The complete history of the attributes having valid time, transaction time or bitemporal semantics may be retrieved if the modifier valid, transaction or bitemporal is prepended to the expression accessing the attribute, respectively. The syntax is:

valid temporal_instance_property

transaction temporal_instance_property

bitemporal temporal_instance_property
An additional modifier “snapshot” is provided to extract the plain values from a temporal object. Its syntax is

snapshot temporal_instance_property
Example:

select p->ProductName as ProductName,

valid p->AvgSales as AvgSales,

valid p->LifeTime as LifeTime,

transaction p->Ingredients as Ingredients

from Products as p

The previous query retrieves the complete history of the AvgSales, LifeTime and Ingredients attributes. In this case, the type of the result would be

bag<struct(ProductName: string,

AvgSales: float valid state overlaps granularity month,

LifeTime: interval valid state granularity day,

Ingredients: list<string> transaction)>

The valid, transaction and bitemporal modifiers return the histories of their operands as they are stored in the database. The application may use methods provided by the interface of valid time, transaction time and bitemporal objects, in order to extract specific values or iterate over the variants.

Since the data model provides support for evolved and deleted rollback data, TOQL provides with means to select the desired variants from a temporal datum. When temporal modifiers (valid, transaction and bitemporal) are used, the target expression may be followed by the variant selectors all, evolved and deleted.

deleted may not be used with valid time data; however, it is legal with the valid modifier, in the case the latter is applied on bitemporal data. If no modifier is specified, all is the default. For valid time data evolved is synonymous to all. Thus the complete syntax for the temporal modifiers is

modifier temporal_instance_property variant_selector

The rules for result formulation are described in the following paragraphs.

The snapshot modifier

The snapshot modifier may be used on any temporal piece of data, and returns a bag, containing the values of the temporal datum’s variants. If a variant selector is used, only the values of the qualifying variants, with respect to the variant selector, are included in the result.

The valid modifier

The valid modifier may be used on valid time and bitemporal data. When applied on valid time data, the datum may be followed by the variant selectors all and evolved, but not deleted, and always returns the datum, as stored in the database.

If the valid modifier is applied on a bitemporal datum, the datum may be followed by any variant selector. The result in this case comprises of the variants that have current transaction timestamp and qualify with respect to the variant selector.

The type of each such variant is

struct(value: T, VT: timestamp_type,

TT: period granularity Second calendar Gregorian,

comment: string, flag: int)

The variants in the list are sorted on fields VT and TT.

The transaction modifier

The transaction modifier may be applied on rollback and bitemporal data, that do not allow overlapping of valid time timestamps, and the expression providing the data may be followed by a variant selector. When applied on rollback data and the all variant selector is used (or a variant selector is not specified), the modifier returns the datum as stored in the database.

If the transaction modifier is applied on rollback data and a variant selector other than all is specified, the variants qualifying with respect to the modifier are included in the result list. Each variant is of type

struct(value: T, TT: period granularity Second calendar Gregorian,

comment: string, flag: int)

The list is sorted on the TT field of its elements.

When the transaction modifier is applied on bitemporal data, a check is first conducted to determine if overlapping on the valid time axis is allowed. If this is the case, an error is raised, since there is no notion of “current valid time”. If overlapping is not allowed, the variants whose valid time contains the present instant are extracted and filtered as specified, by the variant selector. The qualifying variants whose type is

struct(value: T, VT: timestamp_type,

TT: period granularity Second calendar Gregorian,

comment: string, flag: int)

are inserted in the result list, ordered by the value of their VT and TT fields.

The bitemporal modifier

The bitemporal modifier may only be used with bitemporal data and the expression providing the data may be followed by a variant selector. If the variant selector is all (or is missing), the datum is returned with no conversion applied on it. If, however, the evolved or deleted variant selectors are used, only the variants with the respective evolution tracking flags are returned in a list. Each such variant is of type:

struct(value: T, VT: valid_timestamp_type,

TT: period granularity Second calendar Gregorian,

comment: string, flag: int)

Variants are sorted with respect to their valid time timestamps and their transaction time timestamps, in that order.

4.6.2 Temporal data as indexed collections

Temporal data (valid time, transaction time and bitemporal data) may also be treated as indexed collections, orthogonally to lists and arrays supported by TOQL. This means that a number of expressions designating a single variant or a set of variants within a temporal object is provided. In the following paragraphs, these expressions are described.

Expressions for valid state objects not allowing overlapping timestamps and valid event objects

In the following table, the allowable expressions for valid time objects that do not allow variants with overlapping timestamps are described.

Table AUTONUM :
Expressions for valid state objects not allowing overlapping and valid event objects.

Expression
Description

count(valid_obj)
Returns the number of variants contained in the valid time object

first(valid_obj)
Returns the variant of the element with the smallest
 valid timestamp.

last(valid_obj)
Returns the variant with the greatest valid timestamp

valid_obj[number]
Returns the value of the variant whose rank within the object matches the subscript. Variants are ordered with respect to their timestamps.

valid_obj[n1:n2]
Returns the variants whose ranks are included between numbers n1 and n2.

valid_obj[instant]
Returns the value of the variant whose valid timestamp overlaps with the designated instant.

valid_obj[period]
Returns the variants whose valid timestamp overlap with the designated period. If a variant’s valid timestamp overlaps partially with the specified period (i.e. it contains some instants that are included in period and some instants that are not), this variant appears in the result, but its timestamp is set to intersection(VT, period), where VT is the variant’s valid timestamp.

The type of the result of each operation is determined as follows:

1. a single value of type T, if the operation results to a single variant. (T is the timestamped type)

2. list<struct(Value: T, VT: timestampType)>, if the operation results to more than one variants. timestampType is set to period for valid state objects not allowing overlapping timestamps and instant for valid event objects. The calendar and granularity of the VT field are derived from the respective characteristics of the operand’s valid time. The elements of the list are sorted on the VT field.

All subscript expressions may be followed by any of the variant selectors all, evolved, which do not modify the result type or value. If, however, the deleted variant selector is used, a type error is raised.

Example:

select first(valid p->LifePeriod)

from Products as p

where p->ProductName = "Life Orange Juice"

The previous query returns the life time of product “Life Orange Juice” when it was first introduced.

Note
The expression (valid p->LifePeriod)[1] may also be used, instead of first(valid p->LifePeriod)).
When an instant or a period is used as a subscript, it may be preceded with the valid at designation.

Example:

select (valid p->LifePeriod) [valid at instant “1990-01-01”

granularity day]

from Products as p

where p‑>ProductName = "Life Orange Juice"

If an expression yields a single variant, then the function valid may be applied to the result, so as to return the associated timestamp.

Example:

select first(valid p‑>LifePeriod) as LifePeriod,

end(valid(first(valid p‑>LifePeriod))) as ChangePoint

from Products as p

where p‑>ProductName = "Life Orange Juice"

This query returns the life time of product “Life Orange Juice” when it was first introduced and the time point this life time changed.

Furthermore, the modifier weighted (or weighted valid) may be prepended to the expression returning the single variant. In this case, the value of the variant is multiplied by the duration of the variant’s timestamp, in order to produce the final result. This modifier may be used only when the variants value may be multiplied by an integer.

Expressions for valid state objects that allow overlapping timestamps

In the following table, the allowable expressions for valid state objects that allow variants with overlapping timestamps are described.

Table AUTONUM : Expressions for valid state objects that allow overlapping timestamps

Expression
Description

count(valid_obj)
Returns the number of variants contained in the valid time object

first(valid_obj)
Returns the variant with the smallest valid timestamp.

last(valid_obj)
Returns the variant with the greatest valid timestamp

valid_obj[number]
Returns the variant whose rank within the object matches the subscript. Variants are ordered with respect to their timestamps.

valid_obj[n1:n2]

Returns the variants whose ranks are included between numbers n1 and n2.

valid_obj[instant]
Returns the variants whose valid timestamps overlap with the designated instant.

valid_obj[period]
Returns the variants whose valid timestamp is contained in the designated period. Variants whose valid timestamp overlaps partially with the specified period, do not appear in the result.

valid_obj[distinct period]
Returns the variant whose valid timestamp is equal to the designated period.

The schema of the result of each operation is determined as follows:

1. a single value of type T, if the operation results to a single variant. (T is the timestamped type)

2. list<struct(Value: T, VT: period)>, if the operation results to more than one variants. The calendar and granularity of the VT field are derived from the respective characteristics of the operand’s valid time. The elements of the list are sorted on the VT field.

All subscript expressions may be followed by any of the variant selectors all, evolved, which do not modify the result type or value. If, however, the deleted variant selector is used, a type error is raised.

Examples:

select (valid p->AvgSales)[period “[1996-01, 1997-04)”

granularity month] as AvgSales

from Products as p

where p->ProductName = “Life Orange Juice”

The previous query will return all the estimations about the average sales of product “Life Orange Juice”, for the period between January of 1996 and April of 1997. Only

(value: 1400, VT: [1996-01, 1997-01))

will be included in the result, since this is the only variant whose timestamp is included in the period between January of 1996 and April of 1997.

select (valid p->AvgSales)[distinct period “[1996-06, 1997-06)”

granularity month] as AvgSales

from Products as p

where p->ProductName = “Life Orange Juice”

The previous query will return all the estimations about the average sales of product “Life Orange Juice”, for the period between June of 1996 and June of 1997. Only

(value: 1600, VT: [1996-06, 1997-06))

will be included in the result, since this is the only variant whose timestamp matches exactly the period specified in the query.

When an instant or a period is used as a subscript, it may be preceded with the valid at designation e.g. valid_obj[valid at instant “1990-01-01” granularity day].

If an expression yields a single variant, then function valid may be applied to the result, so as to return the associated timestamp, e.g. valid(first(valid_obj)).

Furthermore, the modifier weighted (or weighted valid) may be prepended to the expression returning the single variant. In this case, the value of the variant is multiplied by the duration of the variant’s timestamp, in order to produce the final result. This modifier may be used only when the multiplication operation is meaningful for the type of the variant’s value.

Expressions for transaction time objects

In the following table, the allowable expressions for transaction time objects are described.

Table AUTONUM : Expressions for transaction time objects

Expression
Description

count(trans_obj)
Returns the number of variants contained in the transaction time object

first(trans_obj)
Returns the variant of the element with the smallest transaction timestamp.

last(trans_obj)
Returns the variant with the greatest transaction timestamp.

trans_obj[number]
Returns the variant whose rank within the object matches the subscript. Variants are ordered with respect to their timestamps.

trans_obj[n1:n2]

Returns the variants whose ranks are included between numbers n1 and n2.

trans_obj[instant]
Returns the variant whose transaction timestamp overlaps with the designated instant.

trans_obj[period]
Returns the variants whose transaction timestamps overlap with the designated period. If a variant’s transaction timestamp overlaps partially with the specified period, this variant appears in the result, but its timestamp is set to intersection(TT, period), where TT is the variant’s transaction timestamp.

The schema of the result of each operation is determined as follows:

1. a single value of type T, if the operation results to a single variant. (T is the timestamped type)

2. list<struct(Value: T, TT: period, comment: string, flag: int)>, if the operation results to more than one variants. The calendar and granularity of the TT field are derived to the system’s settings for transaction timestamp representation. The elements of the list are sorted on the timestamp value.

All subscript expressions may be followed by a variant selector, in which case only the variants that qualify with respect to the variant selector will be considered for the computation of the result.

Example:

select count(transaction p->Ingredients) as Ingredients

from Products as p

where p‑>ProductName = "Life Orange Juice"

The previous query counts the different variants of the Ingredients of Life Orange Juice.

When an instant or a period is used as a subscript, it may be preceded with the current at designation, e.g. trans_obj[current at instant “1990-01-01” granularity day].
Example:

select (transaction p->Ingredients)[current at instant “1990-01-01”

granularity day]

from Products as p

where p‑>ProductName = "Life Orange Juice"

If an expression yields a single variant, then functions transaction, evol_flag, and evol_comment may be applied to the result, so as to return the associated timestamp, the evolution tracking flag or the evolution tracking comment, respectively.

Example

transaction(first(trans_obj)))

Furthermore, the modifier weighted (or weighted transaction) may be prepended to the expression returning the single variant. In this case, the value of the variant is multiplied by the duration of the variant’s timestamp, in order to produce the final result. This modifier may be used only when the multiplication operation is meaningful for the type of the variant’s value.

Expressions for bitemporal objects not allowing overlapping valid timestamps and bitemporal event objects

In the following table, the allowable expressions for bitemporal objects that do not allow overlapping valid timestamps and bitemporal event objects are described.

Table AUTONUM :
Expressions on bitemporal objects not allowing overlapping valid timestamps and bitemporal event objects

Expression
Description

count(bitemp_obj)
Returns the number of variants contained in the bitemporal object.

bitemp_obj[valid at instant]
Returns a list containing all variants whose valid time overlaps with the designated instant.

bitemp_obj[current at instant]
Returns a list containing all variants whose transaction time overlaps with the designated instant.

bitemp_obj[valid at instant1, current at instant2]
Returns the value of the variant whose valid and transaction timestamps overlap with instant1 and instant2, respectively.

bitemp_obj[valid at period]
Returns a list, containing the variants whose valid timestamps overlap with the designated period. Variants, whose valid timestamp overlaps partially with the designated period, appear in the result with truncated valid timestamps.

bitemp_obj[current at period]
Returns a list, containing the variants whose transaction timestamps overlap with the designated period. Variants, whose transaction timestamp overlaps partially with the designated period, appear in the result with truncated transaction timestamps.

bitemp_obj[valid at period1, current at period2]
Returns a list containing the variants whose valid and transaction timestamps overlap with period1 and period2, respectively. Variants whose valid or transaction timestamp overlaps partially with the respective period, appear in the result with truncated timestamps.

The schema of the result of each operation is determined as follows:

1. a single value of type T, if the operation results to a single variant. (T is the timestamped type)

2. list<struct(Value: T, VT: timestampType, TT: period, comment: string, flag: int)>, if the operation results to more than one variants. The calendar and granularity of the VT are derived from the valid time dimension characteristics of the temporal object, while the respective features of the TT field are derived to the system’s settings for transaction timestamp representation. The elements of the list are sorted on the timestamps.

Example:

select (bitemporal p->manufactured) [valid at period

“[1995-01, 1997-01)” granularity day,

current at period “[1996-01, 1997-01)” granularity day]

from Products as p

where p‑>ProductName = "Life Orange Juice"

In the expressions where the valid at and current at designations are listed together, their order may be reversed. Note that it is allowed to specify both designations using an instant with one of them and a period for the other (e.g. bitemp_obj[valid at instant “1990” granularity year, current at period “[1990‑1991)” granularity year]). In this case, the instant is casted to a period and then the expression is evaluated.

All subscript expressions may be followed by a variant selector, in which case only the variants that qualify with respect to the variant selector will be considered for the computation of the result

If an expression yields a single variant, then functions valid and transaction may be applied to the result, in order to return the associated valid or transaction timestamp respectively, e.g. valid(bitemp_obj[valid at instant “1990‑01” granularity day, current at instant “1990‑01” granularity day]). Also, the evol_flag and evol_comment functions may be applied in this case, returning the evolution tracking flag or the evolution tracking comment, respectively.

Furthermore, the modifier weighted valid or weighted transaction may be prepended to the expression returning the single variant. In this case, the value of the variant is multiplied by the duration of the variant’s timestamp, in order to produce the final result. This modifier may be used only when the multiplication operation is meaningful for the type of the variant’s value. Note that the modifier weighted without the time axis designation may not be used, since ambiguity arises on the timestamp whose duration must be multiplied with the value of the variant.

Expressions for bitemporal objects that allow overlapping valid timestamps

In the following table, the allowable expressions for bitemporal objects that allow variants with overlapping valid timestamps are described.

Table AUTONUM :
Expressions on bitemporal objects that allow overlapping valid timestamps

Expression
Description

count(bitemp_obj)
Returns the number of variants contained in the bitemporal object

bitemp_obj[valid at instant]
Returns a list containing the variants whose valid timestamps overlap with the designated instant.

bitemp_obj[current at instant]
Returns list containing all variants whose transaction time overlaps with the designated instant.

bitemp_obj[valid at instant1, current at instant2]
Returns a list containing all variants whose valid and transaction timestamps overlap with the respective instants.

bitemp_obj[valid at period]
Returns a list containing the variants whose valid timestamps overlap with the designated period. Variants whose valid timestamp overlaps partially with the designated period do not appear in the result.

bitemp_obj[valid at distinct period]
Returns a list containing the variants whose valid timestamps are equal to the designated period.

bitemp_obj[current at period]
Returns a list containing the variants whose transaction timestamps overlap with the designated period. Variants whose transaction timestamp overlaps partially with the designated period appear in the result with a truncated timestamp.

bitemp_obj[valid at period1, current at period2]
Returns a list containing the variants whose valid and transaction timestamps overlap with the designated periods. Partially overlapping valid and transaction timestamps are handled as described above.

bitemp_obj[valid at distinct period1, current at period2]
Returns a list containing the variants whose valid timestamp is equal to period1 and whose transaction timestamps overlap with period2. Partially overlapping valid and transaction timestamps are handled as described above.

The schema of the result of each operation is determined as follows:

1. a single value of type T, if the operation results to a single variant. (T is the timestamped type)

2. list<struct(Value: T, VT: timestampType, TT: period, comment: string, flag: int)>, if the operation results to more than one variants. The calendar and granularity of the VT are derived from the valid time dimension characteristics of the temporal object, while the respective features of the TT field are derived to the system’s settings for transaction timestamp representation. The elements of the list are sorted on the timestamp value.

All the subscript expressions may be followed by a variant selector, in which case only the variants that qualify with respect to the variant selector will be considered for the computation of the result

If an expression yields a single variant, then functions valid and transaction may be applied to the result, in order to return the associated valid or transaction timestamp respectively, e.g. valid(bitemp_obj[valid at distinct instant “1990‑01” granularity day, current at instant “1990‑01” granularity day]). Also, the evol_flag and evol_comment functions may be applied in this case, returning the evolution tracking flag or the evolution tracking comment, respectively.
Furthermore, the modifier weighted valid or weighted transaction may be prepended to the expression returning the single variant. In this case, the value of the variant is multiplied by the duration of the variant’s timestamp, in order to produce the final result. This modifier may be used only when the multiplication operation is meaningful for the type of the variant’s value. Note that the modifier weighted without the time axis designation may not be used, since ambiguity arrives on the timestamp whose duration must be multiplied with the value of the variant

4.6.3 Extracting object states

If a class has been declared to have valid time and/or transaction time semantics as a whole, the expressions described in paragraphs 4197000.4194424.13995604. through 4197000.4194424.13995604 may be used with expressions whose value is an instance of the class.

For example, if the Factory class declaration were

interface
Factory

(extent
Factories

 key
Owner, Location) valid state granularity day transaction
{

attribute String Owner;

attribute String Location;

attribute String Manager;

relationship Product manufactures

inverse Product::manufactured;

}

then the queries

select (bitemporal state f)[valid at instant '1995-01-01',

current at instant 'now']

from Factories as f

and

select (bitemporal state f)[current at instant 'now' granularity day,

valid at period '[1995-01-01, 1995-06-01)'

granularity day]

from Factories as f

could be used to retrieve the states of the factories, as recorded in the current database state for the instant January 1, 1995 and the period of the first five months of 1995, respectively.

The syntax for invoking a state extraction operation on a temporal object is

(time_dimension state object)extraction_operation [variant_selector]

where time_dimension may be one of the keywords valid, transaction and bitemporal, extraction_operation must be a subscript operator which is applicable to objects of the specified time dimension(s) and variant_selector can be one of all (default value), evolved and deleted. Keyword valid may be used only for valid time and bitemporal objects; keyword transaction is applicable only to transaction time objects, bitemporal event objects and bitemporal state objects not allowing overlapping of valid time timestamps; keyword bitemporal is allowed only for bitemporal objects. The variant selector deleted may not be used with valid time objects.

The modifier time_dimension state may be omitted without changing the query semantics whatsoever, resulting thus to simpler notations. By omitting the modifier, the first example could be rewritten as

select f[valid at instant '1995-01-01', current at instant 'now']

from Factories as f

Since state modifiers do not alter the results of subscript operations, their sole purpose is to serve as documentation.
The type of the result of a state extraction operation is determined as follows:

· If the extraction operation results to a single state, then the value of the respective object state is returned. The whole expression is subject to functions valid, transaction, evol_flag and evol_comment
, so as to access the timestamps or the evolution tracking flag of the selected variant.

· If the extraction operation results to a list of states, then each state is accommodated in a structure. The value of the state is stored in the value field of the structure, whereas timestamps and evolution information are returned in fields named VT, TT, flag and comment, as described in the previous paragraphs.

According to the above, the first example query returns a bag of factory states, with each state corresponding to the state of each factory on 1995‑01‑01, as recorded in the current state of the database. The second example query returns a bag of lists. Each list corresponds to a factory, and contains the factory states within the first five months of year 1995, as recorded in the current state of the database.

The allowable expressions and the respective return types for a specific temporal class depend on the temporal characteristics that have been defined for this class, and are in coherence with the allowable expressions and the return types for temporal instance properties.

Temporal objects may be used as arguments to functions count, first and last. In these cases, the functions return number of states in the object, the state with the smallest timestamp and the state with the greatest timestamp, respectively. Functions first and last may not be used when time_dimension is bitemporal.
4.6.4 Semantic ambiguity resolution

In expressions involving temporal data, ambiguity may arise from the usage of member accessor operators (. and ->), temporal modifiers (valid, transaction and bitemporal), the subscript operator ([]) and specific functions (count, first, last), since the operators may be meaningful both for the temporal and the snapshot dimension of the arguments. For example, the query

select count(p->Ingredients)

from Products as p

where p->ProductName = "Life Orange Juice"

may be interpreted as “fetch the number of ingredients currently used for product Life Orange Juice” (the function applies to the snapshot dimension of the Ingredients attribute) or “fetch the number of times that the ingredients of product Life Orange Juice have changed” (the function applies to the temporal dimension of the Ingredients attribute). This ambiguity is resolved by the automatic conversion rule stated earlier: in this query the accessor to the instance property Ingredients is not preceded by the transaction keyword, thus it is automatically converted to its current value, before it is passed as an argument to the count function. In order to evaluate the number of variants within the instance property, the query would be written as

select count(transaction p->Ingredients)

from Products as p

where p->productName = "Life Orange Juice"

Here, the transaction modifier preserves the Ingredients instance property from being automatically converted to its current value, thus the count function is applied to the temporal dimension, yielding the desired result.
This semantic rule preserves snapshot reducibility, since the semantics of snapshot queries do not change if the database schema has been enriched with temporal semantics. Note, however, that the temporal modifiers have lower precedence than the member accessor and the subscript operators, so parentheses must be used in order to specify the correct order of evaluation. Thus, in order to retrieve the first list of ingredients for the product “Life Orange Juice” that has been recorded into the database, the following query must be issued:

select (transaction p->Ingredients)[0]

from Products as p

where p->productName = "Life Orange Juice"

If the parentheses were omitted from this query (i.e. the select list read transaction p‑>Ingredients[0]), attribute Ingredients would be converted to its snapshot value, and the subscript operator would then be applied to it. Finally, the attempt to evaluate the transaction modifier on the string result of the subscript operator would result to a type error, since temporal modifiers are not applicable on strings.

4.7 Referencing Variants of Temporal Data

A temporal datum is actually a collection of values, each one having one or two associated timestamps (valid and/or transaction time). Since, OQL allows collections to be used for variable definition in the from clause as well as in collection expressions (universal quantification, existential quantification and membership testing), TOQL allows temporal instance properties and temporal objects to be used for the same purpose.

When a variable is defined in terms of a temporal datum, it iterates over the different variants that are stored in the temporal datum. All variants are considered, regardless of their valid or transaction timestamp. The defined variable may be used as argument to the functions valid and transaction so as to return the corresponding timestamp (function valid may be applied to valid time and bitemporal objects, whereas function transaction may be applied to transaction time and bitemporal objects). Also, the evol_flag and evol_comment functions may be applied in this case, returning the evolution tracking flag or the evolution tracking comment, respectively. TOQL supports all forms of variable declaration that are defined for non-temporal characteristics, thus a variable iterating over the variants of a temporal datum may be defined in the from clause using the syntax:

temporal_datum as identifier
The as keyword is optional and may thus be omitted. In the existential and universal quantification constructs, a variable is defined using the in keyword. Consequently, an existential quantification query that involves a variable defined on a temporal object has the form

exists identifier in temporal_datum: query
whereas a universal quantification query involving a variable defined on a temporal object is written as

for all identifier in temporal_datum: query
If a variable is defined in terms of a temporal datum, an identifier is inserted in the scope, as described in paragraph 4.4.14. The type of this identifier is the special type variant, for which the following rules apply:

· If the identifier is used as an argument to functions valid, transaction, evol_flag or evol_comment, whenever each function is applicable, the corresponding information for the variant of the temporal datum is returned.

· In all other cases, the value of the identifier is equal to the value of the variant.

For example, in the query

select
l,
(1)

valid(l) as when,
(2)

l.value
(3)

l.VT
(4)

from Products as p, valid p->LifeTime as l

where variable l is defined in terms of a temporal object, the items (3) and (4) in the select-list are illegal, because since the identifier l is not used as an argument to one of the functions valid, transaction, evol_flag or evol_comment, it is equivalent to the value of the temporal attribute’s variant, which is of type interval and thus does not allow member selection. The value of and the valid timestamp of the variant may be accessed using expressions (1) and (2), respectively.

Temporal data may be used in the place that a collection is allowed in a membership testing query (item in collection). In this case, each variant of the temporal datum is tested, in order to determine if its value is equal to the left-hand side value. If any variant is found to have the specified value, the expression evaluates to true, otherwise it evaluates to false.

Finally, temporal data may be used as right hand side queries in composite predicates. If e1 and e2 are expressions with e2 being a temporal datum and e1 having the snapshot type of e2, and relation is a relational operator (=, !=, <, <=, > or >=) then e1 relation some e2, e1 relation any e2 and e1 relation all e2 are expressions whose value is of type boolean. Expressions e1 relation some e2, and e1 relation any e2 evaluate to true if the operator relation holds between expression e1 and the value of at least one variant of e2. Expression e1 relation all e2 evaluates to true if the operator relation holds between expression e1 and the values of all variants of e2.

Examples

1. Select the products that have ever had a life time equal to15 days:

select p from Products as p

where exists l in valid p->LifeTime: l =

interval “15” granularity day

This query may also be formulated using membership testing as follows:

select p from Products as p

where interval “15” granularity day in valid p->LifeTime

The same query may be stated using a composite predicate:

select p from Products as p

where interval “15” granularity day = any valid p->LifeTime

2. For each product, list its name and life time, along with the corresponding period:

select p->ProductName as ProductName,

l as LifeTime,

valid(l) as LifeTimePeriod

from Products as p, valid p->LifeTime as l

3. For each product, list its name and its ingredients, if the ingredients contained ‘E210’. List also the period during which the ingredients were used.

select p->ProductName as ProductName, Ingredients as Ingredients,

transaction(Ingredients) as TT

from Products as p, transaction p->Ingredients as Ingredients

where exists Ingredient in Ingredients: Ingredient = “E210”

4. For all managers, list the factories (s)he has managed:

select *
from Factories as f, valid Manager as m

group by m as Manager

This returns a bag of structures, with each structure containing a field named Manager, which stores the manager’s name, and a field named partition. The type of partition is

bag<struct(f: Factory, m: String_Attribute_Variant)>
(String_Attribute_Variant is a type defined in TODM.) Note that this case, variants are not automatically reduced to the respective values but returned as is to the application. However, if a variable ident were defined to iterate on the partition field, the value of id.m is automatically reduced to the value of the respective variant. Thus, the type of the query:

select Manager, (select f from partition as p

where year(begin(valid(m))) mod 2 = 1) as OddYear

from Factories as f, valid Manager as m

group by m as Manager

is legal. The second item in the select-list is a select statement itself, filtering the partition set. The TOQL processor is aware of the type of field m and thus allows the application of function valid on it, resulting to the valid timestamp of the variant.

4.8 Constructing Temporal Values

4.8.1 The valid constuctor

The valid constructor may be used to convert collections to valid time objects. The syntax of the valid constructor is

valid valid_type [overlaps] [granularity] [calendar]

'['query : expression']'

where query is a select-from-where query. For each element returned by the query, expression is evaluated and the element is taken as the variant value, whereas the value of the expression provides the associated timestamp. Note that the scope of expression is the same as the scope of the select list of the select-from-where query.

The valid_type designation should be either state or event while granularity and calendar are used to define the desired granularity and calendar of the valid timestamp. Finally, the optional overlaps designation can be used to specify that overlapping valid timestamps are allowed within the valid time object (the default is to disallow overlapping timestamps). This designation may only be used when valid_type is state.

For example, the query

valid state [select Ingredient

from transaction aProduct->Ingredients as Ingredient:

transaction(Ingredient)]

produces a valid time object, with each variant corresponding to a snapshot of the transaction time history of the Ingredients attribute. The valid timestamp of each variant is set to be equal to the transaction timestamp of the original variant. Effectively this query converts the transaction time object to a valid time object.

The type of the result depends on the type returned by the query enclosed in the square brackets (denoted as <type> in the following), the valid_type designation, the existence of the overlaps specifier and the granularity and calendar specification. The rules for determining the result type are as follows:

· if valid_type is state, the overlaps designation is absent and granularity G and calendar C are specified, then the result type is <type> valid state granularity G calendar C. An error is raised if expression produces overlapping periods.

· if valid_type is state, the overlaps designation is present and granularity G and calendar C are specified, then the result type is <type> valid state overlaps granularity G calendar C. An error is raised if expression produces identical periods.

· if valid_type is event, the overlaps designation is absent and granularity G and calendar C are specified, then the result type is <type> valid event granularity G calendar C. An error is raised if expression produces identical instants.

· if valid_type is event and the overlaps designation is present, an error is raised.

In all cases, the calendar specification may be omitted, in which case it defaults to the Gregorian calendar. Similarly, if the granularity specification is absent, the default granularity for the specific calendar is used. The default granularity for the Gregorian calendar is second. Finally, <type> is not allowed to have temporal characteristics, in any case.

4.8.2 The transaction constructor

The transaction constructor may be used to convert snapshot objects to transaction time objects. Its syntax is

transaction '[' query ']'

where query is any query returning a single object (the query may actually return a collection of objects ‑e.g. a set‑ in which case the collection is treated as a single object of type collection). The result contains a single variant, whose value is set to the result of the query, whereas its timestamp is set to [now, UC). Note that there is no provision to set the transaction time of the variant, since the transaction time reflects the time period that facts were known to the database, thus it is not reasonable to “force” past or future knowledge. For example, if the query

select transaction [p->ProductName] from Products as p

is issued against the database presented in section 5 on 1996/08, the result will be a bag containing the following two elements:

{(value: “Life Orange Juice”, TT: [1996/08, UC))}

{(value: “Champion”, TT: [1996/08, UC))}

Each element of the bag is a transaction time object.

The type of the result of the transaction constructor depends on the type returned by the query that is enclosed in square brackets. If the type returned by the query is <type>, then the type of the result of the transaction constructor will be <type> transaction. <type> is not allowed to have temporal semantics.

4.8.3 The bitemporal constructor

The bitemporal constructor may be used to convert collections to bitemporal objects. The syntax of the bitemporal constructor is

bitemporal valid_type [overlaps] [granularity] [calendar]

'['query : expression']'

and its functionality is analogous to the valid constructor, except that it produces bitemporal objects, instead of valid time objects. The transaction timestamp of each variant is set to [now, UC).

The rules for determining the type of the results are analogous to the rules applied for the valid constructor, except from the fact that bitemporal objects are produced, instead of valid time objects.

4.9 Temporal Joins

Temporal joins are needed when the information stored in two (or more) temporal objects must be combined. Consider the query ‘For each factory, list its owner, location and turnover, along with the name of the manager of the corresponding period’. The information about the factory’s turnover is recorded in the turnover instance property, whereas information about the managers of factories is stored in the Manager instance property. Both of these instance properties have valid time semantics.

The query may be answered in TOQL using object variant referencing as illustrated below:

select f->Owner as Owner, f->Location as Location,

t as TurnOver, m as Manager.

intersection(valid(t), valid(m)) as time

from Factories as f, valid f->Turnover as t, valid f->Manager as m

where valid(t) overlaps valid(m)

The query above may produce many elements for each factory, one for each combination of turnover and manager with overlapping valid time periods. The schema of the result may be changed so as to produce one element for each factory, consisting of three fields, the first two being the factory’s owner and location and the third one being a bag<struct(Turnover: long, Manager: string, VT: period granularity Month)> using the following query:

select f->Owner as Owner, f->Location as Location,

Info: (select t as Turnover, m as Manager,

interection (valid(t), valid(m))

from valid f->Turnover as t, valid f->Manager as m

where valid(t) overlaps valid(m))

from Factories as f

The query as presented above is quite verbose, and since it is anticipated that such queries will be frequent TOQL provides a special operator tstruct which may be used to express temporal joins between temporal objects. Using the tstruct operator, the query above may be expressed as:

select f->Owner as Owner, f->Location as Location,

tstruct(Turnover: valid f->Turnover,

Manager: valid f->Manager) as Info

from Factories as f

The syntax for the tstruct operator is similar to the syntax of the standard struct operator, i.e.

tstruct(identifier: query {, identifier: query})

where each query evaluates to a structure of type struct<identifier: type_of(query), {, identifier: type_of(query}, VT: timestamp_type). Note that the tstruct operator constructs a new structure, by setting the values of the identifiers and the associated timestamps. Timestamp setting, however, is only allowed on the valid time dimension, since the transaction time axis reflects the evolution of the database through time, and consequently the construction of past or future transaction timestamps should not be permitted. Thus, only valid time objects may be combined using the tstruct operator.

The type of the result of the tstruct operator depends on the types of its arguments. In the following table, the cases of joining two temporal objects using the tstruct operator are summarised.

Table AUTONUM : Operations on intervals

query2

query1
valid state <T2>
valid state overlap <T2>
valid event <T2>

valid state <T1>
bag<struct(T1, T2, period)>
bag<struct(T1, T2, period)>
bag<struct(T1, T2, instant)>

valid state overlap <T1>
bag<struct(T1, T2, period)>
bag<struct(T1, T2, period)>
Not allowed

valid event <T1>
bag<struct(T1, T2, instant)>
Not allowed
bag<struct(T1, T2, instant)>

In all cases, the first field of a structure in the resulting collection is the value of a variant from the first argument to the tstruct operator, whereas the second field of this structure is a value of a variant from the second argument. A pair of variants qualifies for formulation of a structure that will be included in the result bag in the following cases:

1. If both operands allow overlapping of valid timestamps, their valid timestamps must be identical. The VT field in the resulting structure is equal to both timestamps.

2. If one operand (denoted as vo) allows overlapping, while the other (denoted as vs) does not, then valid(vs) must contain valid(vo). The VT field in the resulting structure is equal to the intersection of valid(vs) and valid(vo).

3. In all other cases, the two timestamps must overlap (overlapping of instants is defined by treating them as trivial periods), and the value of the timestamp is equal to the intersection of the variants’ valid timestamps.

Implementation note

The current implementation of TOQL limits the number of expressions that may be used in a tstruct constructor to two.

4.10 Restructuring Operators

Restructuring operators facilitate the formulation of different equivalent representations of temporal data. Two restructuring operators are provided, with the first one converting period-timestamped variants to instant-timestamped ones, while the second restructuring operator allows for selection of the time axis on which maximal timestamps will be produced. These operators are discussed in the following paragraphs.

4.10.1 Converting period timestamping variants to instant timestamping

For valid state objects not allowing overlapping transaction time objects and bitemporal objects, a restructuring operator is provided that breaks down each valid or transaction time period to individual instants, producing thus many object variants out of a single one. The syntax for invoking this restructuring operator is

(partition time_axis as instant) temporal_object
where time_axis is either valid or transaction. time_axis may be valid if the temporal object has valid state semantics and does not allow overlapping for valid timestamps. The value transaction is allowed for time_axis if the temporal object has transaction time semantics.

Applying the restructuring operator (partition valid as instant) on an object of type T valid state granularity G1 calendar C1 produces a result of type set<struct(Value: Τ, VT: instant)>, with instants having granularity G1 and calendar C1. An element (vr, vtr) belongs in the result set if a variant (vvar, vtvar) occurs within the valid time object and the following conditions are met:

· vr = vvar
· vtvar contains vtr
If the same operator is applied on a bitemporal object, the result schema is extended so as the elements of the resulting set include one extra field with type period and name TT. The value of this field, for each element of the result set, is equal to the transaction timestamp of the respective variant.

The restructuring operator (partition valid as instant) is not applicable on valid state and bitemporal state objects that allow overlapping on valid timestamps, and an attempt to apply this operator on such an object raises a semantic error. This restriction is imposed for semantic purposes, since the values of the variants in valid state and bitemporal objects allowing overlapping of valid timestamps apply only on period level, and not on instant level.

Similarly, applying the (partition transaction as instant) operator on an object of type T transaction, results in a set of type set<struct(Value: T, TT: instant, flag: int, comment: string)>. An element (vr, ttr) belongs in the result set if the variant (vvar, ttvar) occurs within the transaction time object and the following conditions are met:

· vr = vvar
· ttvar contains ttr
If the same operator is applied on a bitemporal object, the result schema is extended so as the elements of the resulting set include one extra field with name VT. The type of this field is identical to the type of the valid timestamps of the bitemporal object. The value of this field, for each element of the result set, is equal to the valid timestamp of the respective variant.

Example:

For the factory owned by “Delta Dairy S.A.” and located at “St. Stefanos”, list the manager for each individual month.

select MonthInfo

from Factories as f,

(partition valid as instant)(valid f->Manager)

as MonthInfo

where f->Owner = "Delta Dairy S.A" and f->Location = "St. Stefanos"

Since the value of the Manager field for the object containing information on the factory owned by “Delta Dairy S.A.” and located at “St. Stefanos” is the valid state object

{(value: “Stefanou”, VT: [1994-01, 1995-01)),

 (value: “Nikou”, VT: [1995-01, 1996-09)}

the result of this query will be equal to the following set:

{(Value: “Stefanou”, VT: 1994-01),
(Value: “Stefanou”, VT: 1994-02),

...,

(Value: “Stefanou”, VT: 1994-12),

(Value: “Nikou”, VT: 1995-01),
(Value: “Nikou”, VT: 1995-02),

...,

(Value: “Nikou”, VT: 1996-08)}

Finally, we note that if the distinguished value forever appears as the end of a valid timestamp, it is substituted by the value of the current timestamp, when conversion to instant timestamping is performed. Indeed, the special value forever is frequently used in valid timestamps having the “until changed” semantics, and not as actually designating the end of the calendar. Thus, in order to avoid computation of unnecessary (and numerous) variants, this substitution is enforced. If the user wants to formulate variants that extend to the end of the calendar, he/she must use explicitly the last timestamp in the calendar, instead of the distinguished timestamp forever.

4.10.2 Producing maximal timestamps

When information evolution is tracked with respect to both time axes, information may be represented using different equivalent forms. For example, consider the case that a contract is signed with a factory to manufacture some product during the period [94, 96), and this fact is recorded in the database on 93‑12. Later, the contract is renegotiated, and its duration is changed to [94, 95); the database is updated on 94‑04. The temporal data described above can be stored in the Manufactured relationship under many equivalent representations, e.g.

{(value: {Ref<factory>}, VT: [94, 96), TT: [93-12, 94-04)),

 (value: {Ref<factory>}, VT: [94, 95), TT: [94-04, UC))}
(1)

{{value: {Ref<factory>}, VT: [94, 95), TT: [93-12, UC)),

 (value: {Ref<factory>}, VT: [95, 96), TT: [93-12, 94-04))}
(2)

{{value: {Ref<factory>}, VT: [94, 95), TT: [93-12, 94-04)),

 (value: {Ref<Factory>}, VT: [94, 95), TT: [94-04, UC)),

 (value: {Ref<factory>}, VT: [95, 96), TT: [93-12, 94-04))}
(3)

Representation (1) has maximal valid timestamps, whereas representation (2) has maximal transaction timestamps. Representation (3) does not use maximal timestamps on either axis. The different coverings of the temporal information, are depicted graphically in the following figure:

[image: image5.wmf](d) Representation 3

(c) Representation 2

(b) Representation 1

(a) Temporal information

VT

TT

UC

94-4

93-12

96

95

94

VT

TT

UC

94-4

93-12

96

95

94

VT

TT

UC

94-4

93-12

96

95

94

VT

TT

UC

94-4

93-12

96

95

94

Figure 1: Equivalent representations of temporal information

The data model may choose any of these representations to store temporal information into the database, but different queries may have different representation needs, in order to produce correct results. For example, consider the following queries:

1. Fetch the products for which contracts have ever been signed to be manufactured by the factory for more than 18 months.

2. Fetch the products for which information about the production status during 1994 has remained constant for more than 6 months.

The first query can be expressed in TOQL as

select p

from Products as p

where exists m in p->Manufactured:

duration(valid(m)) > interval “18” granularity month

but it will only yield correct results if evaluated against representation (a) (indeed, if evaluated against representations (b) or (c), the product will not be selected). The second query can be expressed in TOQL as

select p

from Products as p

where exists m in p->Manufactured:

begin(valid(m)) <= instant “1994” granularity year and

end(valid(m)) >= instant “1995” granularity year and

duration(transaction(m)) > interval “6” granularity month

The query will return correct results if evaluated against representation (b) (indeed, if evaluated against representations (a) and (c), the product will not be selected). Since TOQL cannot automatically determine which representation should be used, it is clear that the user should be allowed to choose whether maximal valid or maximal transaction timestamps would be used for the representation of temporal data in query processing. This facility is provided via a second restructuring operator, whose syntax is

(partition time_axis as period) temporal_object
where time_axis may be either valid or transaction. When the operator is applied on a datum of type T bitemporal state granularity G1 calendar C1 transaction, it modifies the variants of the temporal datum so as to produce maximal timestamps on the designated axis and produces a result of type set<struct(Value: T, VT: period, TT: Period)>. An element (vres, vtres, ttres) appears in the result set, if a variant with the same value and equal timestamps appears in the restructured form of the temporal object.

Using this restructuring operator, the two queries presented above may be stated as:

Query 1:

select p

from Products as p

where exists m in (partition valid as period)(p->Manufactured):

duration(m->VT) > interval “18” granularity month

Query 2:

select p

from Products as p

where exists m in (partition transaction as period)(p->Manufactured):

begin(m->VT) <= instant “1994” granularity year and

end(m->VT) >= instant “1995” granularity year and

duration(m->TT) > interval “6” granularity month

For symmetry reasons, the (partition valid as period) operator is applicable to valid state objects not allowing overlapping, and the (partition transaction as period) operator is applicable to transaction time objects. In these cases, the result schema is modified, so as each element of the result set does not include the field TT or the field VT, respectively.

4.11 Temporal grouping

OQL allows for partitioning query results into groups that share common properties, by means of the group by clause. TOQL extends this functionality by allowing variants of temporal objects to be split into groups that have timestamps falling within the same portion of the time axis. Two such splitting operations are provided: the first partitions variants of a single temporal object, whereas the second one combines variants from multiple temporal objects. In the following paragraphs, these two partitioning operations are described.

4.11.1 Partitioning a single temporal object into variant subsets

The first type of partitioning splits a single temporal object into sets of variants, with each set containing the variants that pertain to a specific portion of the time axis. Partitioning may be performed either on the valid time or on the transaction time axis. The user specifies the desired time axis and an interval, which is used as the basic partitioning unit for the chosen time axis. For example an interval of 1 year specifies that the chosen time axis will be partitioned into segments with duration equal to one calendric year, and variants will be included into some partition, if they contain information pertaining to the associated time segment.

Each basic partitioning unit may be extended towards the beginning and/or the end of the time axis by a specified duration, allowing thus for flexible time window formulation. For example, you may choose a basic partitioning unit of one year and an extension towards the end of the time axis equal to two years, in order to compute aggregates over three-yearly periods, with each period starting at the beginning of each year.

The syntax for invoking this form of partitioning is

(partition time_axis as interval_query

[leading interval_query]

[trailing interval_query] [as calendar]) Temporal_Object

i.e. the temporal object is preceded by a parenthesised expression which starts with the partition keyword and specifies the time axis on which the splitting operation will be performed (valid or transaction) and the basic partitioning unit. The expression contains two optional fields that may be used to specify the extension of the basic partitioning unit towards the beginning and the end of the time axis (the leading and trailing clauses, respectively). The time dimension specified in the partitioning expression must occur within the partitioned temporal object and the granularity of all interval queries must be identical, but not necessarily equal to the characteristics of the temporal datum’s partitioned time axis. (For example, the temporal object may have valid time semantics with granularity of day, whereas partitioning may be performed on a yearly basis). All specified intervals must be expressed in the same calendar, which must be identical to the calendar of the partitioned time axis. Finally, the as calendar clause, if present, specifies that the starting point for the calculation of the time windows is the beginning of the calendar; if this clause is absent, the starting point is the smallest time instant occurring within the timestamps of the partitioned axis of the temporal datum.

For example the query “for all products, retrieve the name and the evolution of their life time for each calendric year” could be expressed in TOQL as

select p->ProductName as Name,

(partition valid as interval “1” granularity year as calendar)

(valid p->LifeTime) as YearlyLifeTime

from Products as p

The YearlyLifeTime field in this query’s result schema is a set of structures, with each structure corresponding to a partition of the valid time axis with duration equal to one year. Each structure contains two member fields. The first member is named Timeslice, its type is period and contains the portion of the time axis to which the information of this structure pertains. The granularity and calendar of the Timeslice field is derived from the respective characteristics of the interval query defining the basic partitioning unit. The second member is a set named partition, and contains the values and the valid timestamp of the variants associated with the portion of the valid time axis stored in the respective Timeslice field. The schema of the partition member in this example thus is bag<struct(value: interval, VT: period)> and the query result’s schema is

bag<struct(Name: string,

YearlyLifeTime: bag<struct(Timeslice: period,

partition: bag<struct(value: interval,

VT: Period)>)>)>

If the query is evaluated on December 15, 1996 on the database contents described in section 5, the result of the query will be:

{(Name: “Life Orange Juice”,

YearlyLifeTime: {(TimeSlice: [1995-01-01, 1996-01-01),

partition:
{(value: 18, VT: [1995-01-01, 1995-06-01)),

(value: 9, VT: [1995-06-01, 1996-01-01))}),

(TimeSlice: [1996-01-01, 1997-01-01),

partition:
{(value: 18, VT: [1996-01-01, 1996-06-01)),

(value: 12, VT: [1996-06-01, 1996-12-15))})}),

(Name: “Champion”,

YearlyLifeTime: {(TimeSlice: [1994-01-01, 1995-01-01),

partition:
{(value: 6, VT: [1994-01-01, 1994-06-01)),

(value: 9, VT: [1994-06-01, 1995-01-01))}),

(TimeSlice: [1995-01-01, 1996-01-01),

partition:
{(value: 12, VT: [1995-06-01, 1996-01-01))})

(TimeSlice: [1996-01-01, 1997-01-01),

partition:
{(value: 12, VT: [1996-06-01, 1996-12-15)})})}

In the general case, if TO is a temporal object, the schema of the partition member resulting from a partitioning operation is a set of structures, whose fields are determined as follows:

· the structure always contains a field named value whose type is identical to the temporal object’s timestamped type.

· if TO has valid time semantics, the structure contains a field named VT that stores the variant’s valid time. The type of the VT field is period, if TO has valid state semantics; if, however, TO has valid event semantics, the type of the VT field is set to instant. In all cases, the granularity and calendar of the VT field are identical to the respective characteristics of TO valid timestamps.

· if TO has transaction time semantics, the structure contains a field named TT which stores the variant’s transaction time. The type of the TT field is always period with the default calendar and granularity used by the system for the transaction time dimension. Also the evolution tracking flag and the evolution tracking comment are present in the structure, with the fields flag, which if of type integer, and comment, of type string.

In the above example, three additional characteristics of the partitioning operator are demonstrated. The first characteristic is that the distinguished value forever in valid timestamps is substituted by the value of the current timestamp for the purposes of partitioning. Indeed the special value forever is frequently used in valid timestamps having the “until changed” semantics, and not as actually designating the end of the calendar, so, in order to avoid computation of unnecessary (and numerous) partitions, this substitution is enforced. If the user wants to formulate partitions which extend to the end of the calendar, he/she must use explicitly the last timestamp in the calendar, instead of the distinguished timestamp forever.
The second characteristic of the partitioning procedure demonstrated in the example above is the handling of period-timestamped variants, whose timestamps are not fully contained within a single segment of the time axis. When variants are timestamped using periods, it is possible that some variant timestamp is not fully contained within a single portion of the time axis, as these portions are defined by the basic partitioning unit and the leading, trailing and calendar clauses. The way that these variants are handled depends on the semantics of the partitioned object:

· for objects having valid state semantics and not allowing overlapping, the value of the variant appears in every partition whose TimeSlice field overlaps with the variant’s timestamp, since the information in such variants is applicable to sub-periods and instants.

· for objects having valid state semantics and allowing overlapping, the variant does not appear in any partition, since the information in such variants is meaningless for instants and sub-periods.

· for transaction time objects, the value of the variant appears in every partition whose TimeSlice field overlaps with the variant’s timestamp.

Note that partial containment situations do not arise for objects with valid event semantics, since instants are either contained in some period, or they are not. In all cases, if the variant appears within some partition, its timestamp is intersected with the TimeSlice attribute of the respective partition.

Since the result of the partitioning operation is a set, it may be used in the from clause, so as to define a variable iterating over the members of the set. This variable may be used in conditions within the where clause, so as to facilitate subset filtering, or in expressions in the select list, in order to compute aggregate values over the variants. For example, the user may request an analytical report for the lifetimes of the products for each even year, which can be computed using the following query:

select p->ProductName as Name,

(select variant

 from (partition valid as

interval “1” granularity year as calendar)

(valid p-> LifeTime) as variant

 where year(begin(variant->TimeSlice)) mod 2 = 0) as YearlyLT

from Products as p

If the user wants to compute the average life time for each product over each year, without taking into account the duration that each life time applied within each year, he/she may issue the following query:

select p->ProductName as Name,

(select variant->TimeSlice as TimeSlice,

avg(
select LT->value

from variant->partition as LT) as AvgLifeTime

 from (partition valid as calendar

interval “1” granularity year)

(valid p->LifeTime) as variant) as YearlyLt

from Products as p

The third characteristic is that the basic partitioning unit, as well as the interval expressions in the leading and trailing clauses need not be constant for all objects. For example, if the declaration of class Product includes a field ReportingPeriod of type interval, the query

select p->ProductName as Name,

(partition valid as p->ReportingPeriod as calendar)

(valid p->LifeTime) as ReportLT

from Products as p

can be issued to produce analytical reports for history of the lifetime for products in the database, using a potentially different reporting period for each product. For instance, the reporting period for the “Life Orange Juice” product may be set to 12 months, whereas the reporting period for the “Champion” product could be set to 18 months.

4.11.2 Combining variants from multiple temporal objects

The second type of partitioning allows for combination of variants from multiple temporal data items into groups, with each group pertaining to a specific portion of either the valid or the transaction time axis. Groups may be filtered, depending on whether they satisfy some condition, and aggregate values may be computed over the elements of each group. This form of partitioning is provided via a special form of the group by clause, in which the grouping expression is a time dimension (valid time or transaction time), with an associated basic partitioning unit and, optionally, unit extensions towards the beginning or the end of the time axis. Group filtering and aggregate value computation is performed using the standard OQL mechanisms, i.e. the having clause and aggregate functions, respectively. The alternative syntax of the group by clause is

group by partition time_axis interval_query [leading interval_query]

[trailing interval_query] as identifier
with time_axis being either valid or transaction. This form of the group by clause is available only when the from clause defines a single variable iterating over a collection of temporal data items. The time dimension designated in the group by clause must occur in the data items resulting from the select/from/where query. The granularity and calendars of all interval queries must be identical; the granularity need not necessarily match the granularity of the temporal items’ partitioned time axis (e.g. the temporal objects may have valid time semantics with granularity of day, whereas partitioning may be performed on a yearly basis); calendar, however, must be identical. If the partitioning expression is time_axis interval_query [optional_time_windows] as identifier, then the result of the grouping is

set<struct(identifier: period,

partition: bag<struct(value: T, VT: period,

TT: period, flag: int, comment: string)>)>

where T being the timestamped type returned by the from clause. (One of the fields VT and TT may be missing, if the from clause defines a variable iterating over a collection of transaction time objects or a collection of valid time objects, respectively. If the from clause defines a variable iterating over a collection of valid event objects, the VT field will be of type instant, instead of period. Finally the flag and comment fields may be missing if the from clause defines a variable iterating over a collection of valid time objects.)

Each element of the returned collection contains the information pertaining to a specific portion of the time axis. Variants that occur in any member of the set defined in the from clause and contain information pertaining to the specific period of the designated time axis, appear as elements in the partition field of the corresponding structure. After grouping has been performed, the having clause is applied (if present) to eliminate groups not meeting some user-specified condition and, finally, the select list is evaluated. Both the having clause and the expressions in the select list may reference the fields identifier and partition. Handling of the distinguished value forever in valid timestamps and behaviour in the presence of variants whose timestamps are partially contained within a time window are as described in the previous paragraph.

For example, the user may want to compute the average yearly lifetime of fresh products, which can be evaluated using the following query:

select Timeslice, avg(select x from partition as x) as Average

from (select valid p->LifeTime from Products as p) as LT

group by partition valid interval “1” granularity year as TimeSlice

The group by clause causes the restructuring of the collection used in the from clause, so as to create groups, each one containing two fields. The first field is named Timeslice (as specified in the group by clause) and designates the portion of the time axis with which this structure is associated. The second field is named partition (which is a system-generated name, consistent with the name used by the standard grouping operator) and contains all the variants that occur in any of the valid time objects which belong to the bag defined in the from clause, and have a valid timestamp which overlaps with the respective portion of the time axis. For each such group, the select list is evaluated, so as to produce the final query result.

To report only on products whose current lifetime exceeds 10 days, the following query could be issued:

select Timeslice, avg(select x from partition as x) as Average

from (select valid p->LifeTime from Products as p) as LT

where LT > interval “10” granularity day

group by partition valid interval “1” granularity year as TimeSlice

The where clause is applied before the group by clause, so the undesired temporal data items are filtered out before grouping is performed.

To report only on periods that start on an odd year, the following query could be issued:

select Timeslice, avg(select x from partition as x)

from (select valid p->LifeTime from Products as p) as LT

group by partition valid interval “1” granularity year as TimeSlice

having year(begin(TimeSlice)) mod 2 = 1

The having clause is applied after grouping is performed.

Appendix A TOQL BNF

<query>:

<integer_literal>

|
<float_literal>

|
<string_literal>

|
<char_literal>

|
<boolean_literal>

|
interval <string_literal>

[granularity <identifier>]

[calendar <identifier>

|
instant <string_literal>

[granularity <identifier>]

[calendar <identifier>

|
period <string_literal>

[granularity <identifier>]

[calendar <identifier>

|
period_set (<query> {, <query>})

[granularity <identifier>]

[calendar <identifier>]

|
period <query> [granularity <identifier>]

[calendar <identifier>]

|
period (<query> , <query>)

[granularity <identifier>]

[calendar <identifier>]

|
instant <query> [granularity <identifier>]

[calendar <identifier>]

|
interval <query> [granularity <identifier>]

[calendar <identifier>]

<query>:

exists <identifier> in <query> : <query>

|
for all <identifier> in <query> : <query>

|
exists (<query>)
<query>:

<query> and <query>

|
<query> or <query>

|
not <query>

<query>:

<query> * <query>

|
<query> / <query>

|
<query> + <query>

|
<query> - <query>

|
+ <query>

|
- <query>

<query>:

<query> intersect <query>

|
<query> union <query>

|
<query> except <query>

<query>:

<query> = [all | some | any] <query>

|
<query> != [all | some | any] <query>

|
<query> <= [all | some | any] <query>

|
<query> < [all | some | any] <query>

|
<query> > [all | some | any] <query>

|
<query> >= [all | some | any] <query>

|
<query> like <string_literal>

<query>:

<query> [<query>] [variant_sel]

|
<query> [<query> : <query>] [variant_sel]

|
<query> [valid at [distinct] <query>]

[variant_sel]

|
<query> [current at <query>] [variant_sel]

|
<query> [valid at [distinct] <query> ,

current at <query>] [variant_sel]

|
<query> [current at <query> ,

valid at [distinct] <query>] [variant_sel

<variant_sel>:
deleted | evolved | all

<query>:

valid [state | event] [overlaps]

[granularity <identifier>]

[calendar <identifier>] [<query> : <query>]

|
transaction [<query>]

|
bitemporal [state | event] [overlaps]

[granularity <identifier>]

[calendar <identifier>]

[<query> : <query>]
<query>:

snapshot <query> [variant_sel]

|
valid [state] <query> [variant_sel]

|
valid (<query>)

|
transaction [state] <query> [variant_sel]

|
transaction (<query>)

|
bitemporal [state] <query> [variant_sel]

<query>:

(<query>)
<query>:

array (<query> {, <query> })

|
set (<query> {, <query> })

|
bag (<query> {, <query> })

|
list (<query> {, <query> })

|
list (<query> .. <query>)

|
(<query> .. <query>)

|
(<query> {, <query> })
<query>:

<identifier> (<query> {, <query> })
<query>:

struct (<identifier> : <query>

{, <identifier> : <query>})
<query>:

tstruct (<identifier> : <query>

{, <identifier> : <query>})
<query>:

<query> <dot> <identifier>

|
<query> <dot> <identifier> ([<query> {,<query>})

<dot>:

. | ->
<query>:

<identifier> (<identifier> : <query>

{, <identifier> : <query})
<query>:

(<identifier>) <query>

|
<identifier>

<query>:

cast <query> as <identifier>

<query>:

<query> in <query>

<restructure_op>:
(partition valid as instant) <query>

|
(partition valid as period) <query>

|
(partition transaction as instant) <query>

|
(partition transaction as period) <query>

|
(partition valid as <query> [leading <query>]

[trailing <query>] [as calendar]) <query>

|
(partition transaction as <query>

[leading <query>] [trailing <query>]

[as calendar]) <query>

<query>:

distinct(<query>)
<query>:

avg (<query>)

|
count (<query> | *)

|
max (<query>)

|
min (<query>)

|
sum (<query>)
<query>:

element(<query>)

|
flatten(<query>)

|
listtoset(<query>)
<query>:

first(<query>)

|
last(<query>)
<query>:

abs(<query>)

<query>:

* <query>

<query>:

<query> contains <query>

|
<query> meets <query>

|
<query> overlaps <query>

|
<query> precedes <query>

<query>:

weighted valid <query>

|
weighted transaction <query>

|
weighted <query>

<query>:

select [distinct] <projection_attrs>

from <variable_dcl> {, <variable_dcl> }

[where <query>]

[group by (<projection> {, <projection> } |

partition (valid | transaction) <query>

[leading <query>]

[trailing <query>] as <identifier>)

[having <query>]]

[order by <query> [asc | desc]

{, <query> [asc | desc] }]

<projection_attrs>:
* | <projection> {, <projection> }

<projection>:
<query>

|
<query> as <identifier>

<variable_dcl>:
<query>

|
<query> <identifier>

|
<query> as <identifier>

Appendix B: Reserved words

abs

all

and

any

array

as

asc

avg

bag

bitemporal

calendar

cast

contains

count

deleted

desc

distinct

element

event

evolved

except

exists

false

first

flatten

from

granularity

having

in

instant

intersect

interval

last

leading

like

list

listtoset

max

meets

min

not

or

overlaps

period

period_set

precedes

select

set

snapshot

some

state

struct

sum

trailing

transaction

true

tstruct

union

unique

valid

weighted

where

The following words are reserved as sequences. For example, “for” is not a reserved word, unless followed by “all”, in which case the sequence “for all” is reserved. Reserved sequences may include newlines, but it is not allowed to introduce comments between the words forming the sequence.

current at

for all

group by

order by

partition transaction

partition valid

select distinct

valid at

valid at distinct

weighted transaction

weighted valid

Appendix C: References

[T35TR.2]
“TODL User’s Guide”, Univ. of Athens, 01 PLIROFORIKI S.A., O2 Technology, TOOBIS Deliverable T35D.2

[T31TR1]
Matra Systèmes & Informations, “TODM Specification and Design”

[T34TR2]
Matra Systèmes & Informations, “TODM User’sGuide”, TOOBIS Deliverable T34D.2

[ODMG1]
The Object Database Standard: ODMG-93, Release 1.2, Edited by R.G.G Cattell, Morgan Kaufmann Publishers, 1996

[ODMG2]
The Object Database Standard: ODMG 2.0, Edited by R.G.C. Cattell, Douglas K. Barry, Morgan Kaufmann Publishers, 1997

Appendix D: TOQL Installation

In order to build the TOQL library, you must build first the TODL and metadata packages. The building procedure consists of the following steps:

1. Unpack and untar the distribution package (named TOQL.tar.gz or TOQL.tar.Z)

In Unix issue the command

uncompress –c TOQL.tar.Z | tar xf –

or

gunzip –c TOQL.tar.gz | tar xf –

In Windows NT, use the WinZip utility.

This step will create a directory named TOQL.

2. In Unix, change your working directory to TOQL and edit the existing Makefile, changing the settings pointed to and especially the setting

TODM_DIR =

so as to reflect the location of the TODM installation and the setting

METADATA_DIR =

so as to reflect the location of the metadata installation.

3. Type make. This will create the TOQL library libtoql.a, which will be installed in the TODM lib directory. Additionally, files toql_db.hxx and toql_qry.hxx will be installed in the include directory of TODM.

Library libtoql.a must be linked in all programs that use TOQL queries. If libtoql.a is linked into a program, libmetadata.a must linked too, and libtoql.a must preceed the libmetadata.a in the linking command. Appropriate TODM libraries must also be linked as specified in the documentation of TODM.

� If keywords like distinct, and order by are used, then the result may be a set or a list, respectively.

� TOQL provides also the constructors tstruct, valid, transaction and bitemporal which are related to the temporal aspects of the language and will be described in the next part of this manual.

�Where int is one of the following TODL (or an equivalent): short, long, unsigned short and unsigned long.

� Actually short, long, unsigned short and unsigned long

� The two arguments may have different granularities. We explain this case in following section.

� A total order is defined for periods. Period p1 = [p1b, p1e) is less than p2 = [p2b, p2e) if one of the following conditions are true:

p1b < p2b

p1b = p2b �SYMBOL 217 \f "Symbol" \s 10�Ù� p1e < p2e

� Function valid may be used if the subscripted object is a valid time or a bitemporal object; functions transaction, evol_flag and evol_comment may be used if the subscripted object is a transaction time, or a bitemporal object.

PAGE

_949238677.doc

Obj002

ProductName: ‘Champion’

Description: ‘Chocolate milk with honey and malt. Sold in packages of 330 ml.’

AvgSales: {(value: 600, VT: [1994-01, 1994-06)), (value: 500, VT: [1994-06, 1996 -09)),

(value: 450, VT: [1994-06, 1995-01)) }

Ingredients: {(value: {‘

Cow’’s Milk’, ‘Honey’, ‘Chocolate’, ‘Malt’, ‘

Color’}, TT: [1994-01, 1994-05)),

 (value: {‘

Cow’’s Milk’, ‘Honey’, ‘Chocolate’, ‘Malt’}, TT: [1994-05, 1995-02))}

LifeTime: {(value: 6, VT: [1994-01-01, 1994-06-01)), (value: 9, [1994-06-01, 1995-01-01)),

(value: 12, [1995-06-01,

forever

))}

Manufactured: {(value: {

Ref<Obj005>}, VT: [1994-01-01, 1996-01-01), TT: [1993-11-07, 1994-10-10)),

 (value: {

Ref<Obj005>}, VT: [1994-06-01, 1995-01-01), TT: [1994-10-10,

UC

))}

_949238587.doc

Obj006

Owner: ‘3E Canning Co.’

Location: ‘

Korinthos’

Manager: {(value: ‘

Andreou’, VT: [1993-06, 1995-04)), (value: ‘

Ioannou’, VT: [1995-04, 1997-01))}

Turnover: {(value: 5000, VT: [1994-01, 1994-09)), (value: 6000, VT: [1995-01, 1995-07))}

Manufactures: {(value: {

Ref<Obj001>}, VT: [1996-06-01, 1997-01-01), TT: [1995-11-16, 1996-04-10)),

(value: {

Ref<Obj001>}, VT: [1996-06-01, 1997-06-01), TT: [1996-04-10,

UC

))}

